2471
R. Natarajan et al.
Letter
Synlett
(4) For some recent reports on indole synthesis, see: (a) Newman,
S. G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416. (b) Cacchi,
S.; Fabrizi, G.; Goggiamani, A.; Perboni, A.; Sferrazza, A.; Stabile,
P. Org. Lett. 2010, 12, 3279. (c) Levesque, P.; Forunier, P.-A. J.
Org. Chem. 2010, 75, 7033. (d) He, Z.; Li, H.; Li, Z. J. Org. Chem.
2010, 75, 4296. (e) McAusland, D.; Seo, S.; Pintori, D. G.;
Finlayson, J.; Greaney, M. F. Org. Lett. 2011, 13, 3667.
(f) Kothandaraman, P.; Mothe, S. R.; Toh, S. S. M.; Chan, P. W. H.
J. Org. Chem. 2011, 76, 7633. (g) Bonnamour, J.; Bolm, C. Org.
Lett. 2011, 13, 2012. (h) Kim, J. H.; Lee, S.-G. Org. Lett. 2011, 13,
1350. (i) Yan, Q.; Luo, J.; Zhang-Negrerie, D.; Li, H.; Qi, X.; Zhao,
K. J. Org. Chem. 2011, 76, 8690. (j) Zhao, Y.; Li, D.; Zhao, L.;
Zhang, J. Synthesis 2011, 873. (k) Ali, M. A.; Punniyamurthy, T.
Synlett 2011, 623. (l) Yoshida, K.; Hayashi, K.; Yanagisawa, A.
Org. Lett. 2011, 13, 4762. (m) Zhang, Z.-G.; Haag, B. A.; Li, J.-S.;
Knochel, P. Synthesis 2011, 23. (n) Varela-Fernández, A.; Varela,
J. A.; Saá, C. Synthesis 2012, 44, 3285. (o) Wei, Y.; Deb, I.;
Yoshikai, N. J. Am. Chem. Soc. 2012, 134, 9098. (p) Gore, S.;
Baskaran, S.; König, B. Org. Lett. 2012, 14, 4568. (q) Porcheddu,
A.; Mura, M. G.; De Luca, L.; Pizzetti, M.; Taddei, M. Org. Lett.
2012, 14, 6112. (r) Jadhav, J.; Gaikwad, V.; Kurane, R.; Salunkhe,
R.; Rashinkar, G. Synlett 2012, 23, 2511. (s) Selander, N.;
Worrell, B. T.; Chuprakov, S.; Velaparthi, S.; Fokin, V. V. J. Am.
Chem. Soc. 2012, 134, 14670. (t) Nanjo, T.; Tsukano, C.;
Takemoto, Y. Org. Lett. 2012, 14, 4270. (u) Lu, B. Z.; Wei, H.-X.;
Zhang, Y.; Zhao, W.; Dufour, M.; Li, G.; Farina, V.; Senanayake, C.
H. J. Org. Chem. 2013, 78, 4558. (v) Reddy, B. V. S.; Reddy, M. R.;
Rao, Y. G.; Yadav, J. S.; Srighar, B. Org. Lett. 2013, 15, 464.
(w) Gogoi, A.; Guin, S.; Rout, S. K.; Patel, B. K. Org. Lett. 2013, 15,
1802. (x) Lin, A.; Yang, J.; Hashim, M. Org. Lett. 2013, 15, 1950.
(y) Ji, X.; Huang, H.; Wu, W.; Jiang, H. J. Org. Chem. 2013, 78,
11155.
(5) (a) Radhamani, S.; Natarajan, R.; Unnikrishnan, P. A.; Prathapan,
S.; Rappai, J. P. New J. Chem. 2015, 39, 5580. (b) John, P. R. PhD
Thesis; Cochin University of Science and Technology: Cochin,
India, 2010. (c) Sandhya, R. PhD Thesis; Cochin University of
Science and Technology: Cochin, India, 2014.
(6) For a similar cyclization reaction, see: Pecak, W. H.; Son, J.;
Burnstine, A. J.; Anderson, L. L. Org. Lett. 2014, 16, 3440.
(7) For earlier reports on nitrone to indole conversions, see:
(a) Reaction of N-arylnitrone and ketenimine: Tsuge, O.;
Watanabe, H.; Masuda, K.; Yousif, M. M. J. Org. Chem. 1979, 44,
4543. (b) Reaction of nitrones with (phenylsulfonyl)alkynes:
Parpani, P.; Zecchi, G. J. Org. Chem. 1987, 52, 1417. (c) Reaction
of α,β-unsaturated N-arylnitrones with acetylenes: Huehls, C.
B.; Hood, T. S.; Yang, J. Angew. Chem. Int. Ed. 2012, 51, 5110.
(8) General Procedure
(9) For additional references on 3-substituted indoles, see:
(a) Nanjo, T.; Yamamoto, S.; Tsukano, C.; Takemoto, Y. Org. Lett.
2013, 15, 3754. (b) Black, D. S.; Debdas, R. B.; Kumar, N. Aust. J.
Chem. 1992, 45, 611. (c) Coffman, K. C.; Palazzo, T. A.; Hartely, T.
P.; Fettinger, J. C.; Tantillo, D. J.; Kurth, M. J. Org. Lett. 2013, 15,
2062. (d) Hopkins, C. R.; Czekaj, M.; Kaye, S. S.; Gao, Z.; Pribish,
J.; Pauls, H.; Liang, G.; Sides, K.; Cramer, D.; Cairns, J.; Luo, Y.;
Lim, H.-K.; Vaz, R.; Rebello, S.; Maignan, S.; Dupuy, A.; Mathieue,
M.; Levella, J. Bioorg. Med. Chem. Lett. 2005, 15, 2734.
(e) Yamazaki, K.; Nakamura, Y.; Kondo, Y. J. Org. Chem. 2003, 68,
6011. (f) Ji, X.; Huang, H.; Wu, W.; Li, X.; Jiang, H. J. Org. Chem.
2013, 78, 11155. (g) Hirano, S.; Akai, R.; Shinoda, Y.; Nakatsuka,
S. Heterocycles 1995, 41, 255. (h) Mongel, A.; Palopl, J.; Ramirez,
C.; Font, M.; Fernandez, A. E. Eur. J. Med. Chem. 1991, 26, 179.
(i) Mitchell, G.; Rees, C. W. J. Chem. Soc., Chem. Commun. 1986,
399. (j) Mitchell, G.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1
1987, 413.
(10) Characterization Data for 5b and 5c
(E)-1-{2′,5′-Diphenyl-2′H-spiro[fluorene-9,3′-isoxazole]-4′-
yl}-3-phenylprop-2-en-1-one (5b)
Yellow solid, yield 16%; mp 105 °C. IR (KBr): νmax = 3058 (=CH
stretch), 1649 (C=O stretch) cm–1. 1HNMR (400 MHz, CDCl3): δ =
7.89–7.86 (m, 2 H), 7.67 (d, J = 7.6 Hz, 2 H), 7.64–7.60 (m, 1 H),
7.57–7.53 (m, 4 H), 7.36–7.32 (m, 2 H), 7.27–7.16 (m, 6 H),
6.99–6.91 (m, 4 H), 6.81–6.76 (m, 1 H), 6.61–6.58 (m, 2 H), 6.36
(d, J = 15.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 183.9, 163.1,
145.9, 144.9, 140.8, 140.7, 134.9,131.7, 130.2, 129.8, 129.4,
128.8, 128.6, 128.1, 128.0, 127.9, 127.0, 125.4, 124.7, 123.6,
120.1, 118.3, 117.0, 84.9. MS: m/z = 503 [M+]. Anal. Calcd for
C
36H25NO2: C, 85.86; H, 5.00, N, 2.78. Found: C, 85.82; H, 4.98; N,
2.75.
1-{2′,5′-Diphenyl-2′H-spiro[fluorene-9,3′-isoxazole]-4′-
yl}ethanone (5c)
Yellow solid, yield 18%, mp 124 °C. IR (KBr): νmax = 3058 (=CH
stretch), 1649 (C=O stretch) cm–1. 1HNMR (400 MHz, CDCl3): δ =
7.84–7.81 (m, 2 H), 7.65–7.52 (m, 6 H), 7.37–7.33 (m, 2 H),
7.26–7.22 (m, 3 H), 6.93–6.89 (m, 2 H), 6.79–6.75 (m, 1 H),
6.56–6.53 (m, 2 H), 2.28 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ =
192.4, 163.4, 145.9, 144.9, 140.6, 131.4, 129.7, 129.4, 128.6,
128.3, 128.0, 127.9, 125.5, 123.6, 120.2, 117.3, 117.1, 84.5, 28.7.
MS: m/z = 415 [M+]. Anal. Calcd for C29H21NO2: C, 83.83; H, 5.09;
N, 3.37. Found: C, 83.78; H, 5.05; N, 3.35.
(11) (a) Boger, D. L.; Desharnais, J.; Capps, K. Angew. Chem. Int. Ed.
2003, 42, 4138. (b) Tietze, L. F.; Schuster, H. J.; Schmuck, K.;
Schuberth, I.; Alves, F. Bioorg. Med. Chem. 2008, 16, 6312.
(c) Helsley, G. C.; Effland, R. C.; Davies, L. US 3997557, 1976;
Chem. Abstr. 1977, 86, 139850 (d) Chen, J.; Burghart, A.;
Derecskei-Kovacs, A.; Burgess, K. J. Org. Chem. 2000, 65, 2900.
(12) For nitrone syntheses, see: (a) Johnson, A. W. J. Org. Chem. 1963,
28, 252. (b) Mugnier, Y.; Gard, J.-C.; Huang, Y.; Couture, Y.; Lasia,
A.; Lessarc, J. J. Org. Chem. 1993, 58, 5329. (c) Abou-Gharbia, M.;
Joullie, M. M. Synthesis 1977, 5, 318. (d) Magid, A.; Abou-Ghar-
bia, M. A.; Joulli, M. M. J. Org. Chem. 1979, 44, 2961. (e) Breuer,
E.; Aurich, H. G.; Nielsen, A. In Nitrones and Nitronic Acid Deriva-
tives: An Update in Nitrones, Nitronates and Nitroxides; John
Wiley and Sons: Chichester, 1989. (f) Feuer, H. In Nitrile Oxides,
Nitrones and Nitronates in Organic Synthesis: Novel Strategies in
Synthesis, 2nd ed.; John Wiley and Sons: Chichester, 2008.
A 1:1 mixture (1 mmol each) of nitrone and acetylene in MeCN
(10 mL) was stirred under reflux for 4 h. After complete con-
sumption of starting materials, solvent was evaporated off, and
the residue was redissolved in CH2Cl2 (10 mL) in the same flask.
Oxalic acid (1 mmol) adsorbed on silica gel (1 g) was added to
the same pot, and the mixture was stirred at r.t. for 1 h. After
completion of the reaction, the solvent was removed, and the
products were isolated by column chromatography over silica
gel using mixtures of hexane and EtOAc as eluents. In all reac-
tions, fluorenone was formed as a byproduct in yields compara-
ble to those cited for the indoles. Nitrones were prepared by
recycling the fluorenone.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2467–2471