4448
E. Bedini et al. / Tetrahedron Letters 45 (2004) 4445–4448
10. Tsuda, Y.; Okuno, Y.; Iwaki, M.; Kanemitsu, K. Chem.
Pharm. Bull. 1989, 37, 2673–2678.
steps). Anomeric deallylation with PdCl2 afforded 16
(84%) that was finally converted into two different gly-
cosyl donors, namely trichloroacetimidate 17 (53%) by
treatment with Cl3CCN and DBU and N-phenyl-tri-
fluoroacetimidate20 18 (67%) by treatment with
CF3C(NPh)Cl and NaH.21 Since 18 was obtained in a
significantly better yield than 17 after chromatographi-
cal purification, we decided to test the former compound
in two glycosylation reactions.
11. (a) Pauls, H. W.; Fraser-Reid, B. J. Org. Chem. 1983, 48,
1392–1393; (b) Bongini, A.; Cardillo, G.; Orena, M.;
Sandri, S.; Tomasini, C. Tetrahedron 1983, 39, 3801–3806.
12. Link, T.; Raghavan, S.; Danishefsky, S. J. J. Am. Chem.
Soc. 1995, 117, 552–553.
13. Liu, M.; Yu, B.; Wu, X.; Hui, Y.; Fung, K.-P. Carbohydr.
Res. 2000, 329, 745–754.
14. (a) Hatakeyama, S.; Matsumoto, H.; Fukuyama, H.;
Mukugi, Y.; Irie, H. J. Org. Chem. 1997, 62, 2275–2279;
(b) Schmidt, U.; Respondek, M.; Lieberknecht, A.;
Werner, J.; Fischer, P. Synthesis 1989, 256–261; (c)
Bernet, B.; Vasella, A. Tetrahedron Lett. 1983, 49, 5491–
5494.
Coupling 18 with the rhamnosyl acceptors 1922 and 2123
(Scheme 3) under the agency of TMSOTf gave 20 and 22
in 65% and 61% yield, respectively, and a fairly good
a-selectivity. Notably, both 20 and 22 are useful build-
€
15. Schurrle, K.; Beier, B.; Piepersberg, W. J. Chem. Soc.,
Perkin Trans. 1 1991, 2407–2412.
ing-blocks for the synthesis of many
D-Fucp3NAc
containing repeating unit of LPS from phytopathogenic
bacteria. Work is in progress in order to further enhance
a-selectivity of the couplings; the results will be pub-
lished at due time.
€
16. Schmidt, U.; Zah, M.; Lieberknecht, A. J. Chem. Soc.,
Chem. Commun. 1991, 1002–1004.
17. Compound 13: A solution of 9 (1.34 g, 4.61 mmol) in 1:1
CH2Cl2/pyridine (10 mL) was cooled at 0 °C and then
Tf2O (1.6 mL, 9.7 mmol) was slowly added. The solution
was stirred at 0 °C for 400, after that the solution was
diluted with CH2Cl2 (300 mL) and washed with 1 M HCl
(300 mL), 1 M NaHCO3 (300 mL) and water (300 mL).
The organic layer was collected, dried and concentrated to
afford an oily residue that was dissolved in 2:1 MeOH/
CH2Cl2 (21 mL) and treated with a 0.6 M solution of
NaOMe in MeOH (12 mL) at rt. After 2 h, the solution
was diluted with CH2Cl2 (350 mL) and washed with water
(350 mL). The organic layer was collected, dried and
concentrated to afford an oily residue that was then
dissolved in CH2Cl2 (13 mL). The solution was cooled at
0 °C and then treated with Cl3CCN (4.5 mL, 44.8 mmol)
and DBU (360 lL, 0.72 mmol). After 600 under stirring at
0 °C, the solution was concentrated. Silica gel (0.063–
0.200 mm) (5.6 g) was then added to the residue, the
mixture was suspended in CHCl3 (20 mL) and immediately
concentrated in vacuo at 45 °C. After 100 the solvent was
completely evaporated and the solid residue was chroma-
tographed (8:1 petroleum ether/EtOAc) to give 13
Acknowledgements
We thank Centro di Metodologie Chimico-Fisiche of
the University Federico II of Naples for the NMR
spectra, and MIUR, Rome (Progetti di Ricerca di In-
teresse Nazionale 2002, M.P.) for the financial support.
References and notes
1. (a) Knirel, Y.; Kochetkov, N. K. Biochemistry (Moscow)
1994, 59, 1325–1383; (b) Jansson, P.-E. In Endotoxins in
Health and Disease; Brade, H., Opal, S. M., Vogel, S.,
Morrison, D. C., Eds.; Marcel Dekker: New York, 1999;
pp 155–178; (c) Raetz, C. R. H.; Whitfield, C. Ann. Rev.
Biochem. 2002, 71, 535–700.
(965 mg, 64%) as a yellowish oil. ½aꢀ +31.7 (c 0.7,
D
CH2Cl2). 1H NMR (CDCl3, 200 MHz): d 5.90 (m, 1H,
OCH2CH@CH2), 5.28 (dd, 1H, Jvic ¼ 17:2 Hz, Jgem ¼ 1:6
Hz, OCH2CH@CH2 trans), 5.21 (dd, 1H, Jvic ¼ 10:4 Hz,
Jgem ¼ 1:6 Hz, OCH2CH@CH2 cis), 4.85 (dd, 1H,
J4;3 ¼ 9:8 Hz, J4;5 ¼ 1:6 Hz, H4), 4.76 (d, 1H, J1;2 ¼ 4:4 Hz,
H1), 4.72 (dd, 1H, J3;4 ¼ 9:8 Hz, J3;2 ¼ 3:8 Hz, H3), 4.40–
4.28 (m, 3H, H2, H5, OCH2CH@CH2), 4.13 (m, 1H,
OCH2CH@CH2), 3.08 (b s, 1H, OH), 1.29 (d, 3H,
J6;5 ¼ 6:6 Hz, H6); 13C NMR (CDCl3, 50 MHz): d 164.2
(C@N), 133.8 (OCH2CH@CH2), 117.5 (OCH2CH@CH2),
94.6 (C1), 83.5 (C4), 68.3, 66.9, 65.7, 64.8 (C2, C3, C5,
OCH2CH@CH2), 15.9 (C6). ESI-MS for C11H14Cl3NO4
(m=z): Mr (calcd) 329.00, Mr (found) 351.88 (M+Na)þ.
18. Dejter-Juszynski, M.; Flowers, H. M. Carbohydr. Res.
1972, 23, 41–45.
2. Corsaro, M. M.; De Castro, C.; Molinaro, A.; Parrilli, M.
Recent Res. Dev. Phytochem. 2001, 5, 119–138.
3. Some recent examples: (a) Langner, M.; Laschat, S.;
Grunenberg, J. Eur. J. Org. Chem. 2003, 1494–1499; (b)
Nicolaou, K. C.; Baran, P. S.; Zhang, Y.-L.; Barluenga,
S.; Hunt, W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc.
2002, 124, 2233–2244; (c) Varga, Z.; Bajza, I.; Batta, G.;
ꢂ
Liptak, A. Tetrahedron Lett. 2002, 43, 3145–3148; (d)
Kirkpatrick, P. N.; Scafe, W.; Hallis, T. M.; Liu, H.-W.;
Spencer, J. B.; Williams, D. H. Chem. Commun. 2000,
1565–1566; (e) Tsvetkov, Y. E.; Shashkov, A. S.; Knirel,
€
Y.; Backinowsky, L.; Zahringer, U. Mendeleev Commun.
2000, 90–92; (f) Franck-Neumann, M.; Miesch-Gross, L.;
Gateau, C. Tetrahedron Lett. 1999, 40, 2829–2832.
4. Nicolaou, K. C.; Mitchell, H. J. Angew. Chem., Int. Ed.
2001, 40, 1576–1624.
5. Adinolfi, M.; Barone, G.; Corsaro, M. M.; Lanzetta, R.;
Mangoni, L.; Monaco, P. J. Carbohydr. Chem. 1995, 14,
913–928.
19. Vermeer, H. J.; van Dijk, C. M.; Kamerling, J. P.;
Vliegenthart, J. F. G. Eur. J. Org. Chem. 2001, 193–
203.
20. Yu, B.; Tao, H. Tetrahedron Lett. 2001, 42, 2405–2407.
21. Adinolfi, M.; Barone, G.; Iadonisi, A.; Schiattarella, M.
Tetrahedron Lett. 2002, 43, 5573–5577.
6. Chatterjee, S. K.; Nuhn, P. Chem. Commun. 1998, 1729–
1730.
7. Mancuso, A. J.; Swern, D. Synthesis 1981, 165–185.
8. Liakatos, A.; Kiefel, M. J.; von Itzstein, M. Org. Lett.
2003, 5, 4365–4368.
22. Bedini, E.; Barone, G.; Unverzagt, C.; Parrilli, M.
Carbohydr. Res. 2004, 339, 393–400.
23. Zou, W.; Sen, A. K.; Szarek, W.; MacLean, D. B. Can. J.
Chem. 1993, 71, 2194–2200.
9. Rich, J. R.; Bundle, D. R. Org. Lett. 2004, 6, 897–900.