ORGANIC
LETTERS
2006
Vol. 8, No. 21
4891-4894
Facile Synthesis, Fluorescence, and
Photochromism of Novel Helical
Pyrones and Chromenes
Jarugu Narasimha Moorthy,* Parthasarathy Venkatakrishnan,
Sanchita Sengupta, and Mahiuddin Baidya
Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
Received August 3, 2006
ABSTRACT
Aryl coumaryl ethylenes undergo oxidative photocyclization readily to yield helical pyrone-annulated condensed aromatics. The pyrones are
conveniently converted to the corresponding photochromic diphenylpyrans/chromenes. Both pyrones and chromenes exhibit helicity-dependent
fluorescence efficiency and persistence, respectively.
Helicity is ubiquitous in nature and pervades every sphere
of day-to-day life. Historically, helical structures have elicited
tremendous interest as aesthetic marvels. However, remark-
able applications of helicenes in the development of nonlinear
optical materials,1 liquid crystals,2 chiroptical materials,3 etc.4
have unfolded only in recent years. Consequently, there is a
sudden surge of interest in helices with unique properties
and in the development of novel synthetic protocols to access
them.5 Among various routes for the synthesis of organic
helical structures,5,6 oxidative photocyclization of diaryleth-
ylenes continues to be most favored.6c,7
In our recent investigations aimed at exploring modifica-
tion of the reactivity of stilbenes via 2-pyranone-annulation,
we uncovered novel cis f trans isomerization of some
derivatives in the solid state.8 In a continuation of these
studies, we reasoned that it should be possible to convert
2-pyranone-annulated phenyl aryl ethylenes into novel helical
structures containing the basic benzopyrone, i.e., coumarin,
moiety; coumarins are fantastic fluorophores and are wide-
spread as dyes, DNA intercalators, biologically active
(1) (a) Verbiest, T.; Elshocht, S. V.; Kauranen, M.; Hellemans, L.;
Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A. Science 1998, 282,
913. (b) Verbiest, T.; Sioncke, S.; Persoons, A.; Vyklicky´, L.; Katz, T. J.
Angew. Chem., Int. Ed. 2002, 41, 3882.
(2) Nuckolls, C.; Katz, T. J. J. Am. Chem. Soc. 1998, 120, 9541.
(3) (a) Feringa, B. L.; van Delden, R. A.; ter Wiel, M. K. J. In Molecular
Switches; Feringa, B. L., Ed.; Wiley-VCH: Weinheim, 2001; Chapter 5, p
123. (b) Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E.
M. Chem. ReV. 2000, 100, 1789.
(4) (a) Meurer, K. P.; Vogtle, F. Top. Curr. Chem. 1985, 127, 1. (b)
Rowan, A. E.; Nolte, R. J. M. Angew. Chem., Int. Ed. 1998, 37, 63. (c)
Katz, T. J. Angew. Chem., Int. Ed. 2000, 39, 1921.
(6) (a) Liu, L.; Katz, T. J. Tetrahedron Lett. 1990, 31, 3983. (b) Carreno,
M. C.; Garc´ıa-Cerrada, S.; Urbano, A. J. Am. Chem. Soc. 2001, 123, 7929.
(c) Norsten, T. B.; Peters, A.; McDonald, R.; Wang, M.; Branda, N. R. J.
Am. Chem. Soc. 2001, 123, 7447.
(7) For example, see: (a) Nakamura, Y.; Yamazaki, T.; Nishimura, J.
Org. Lett. 2005, 7, 3259. (b) Wigglesworth, T. J.; Sud, D.; Norsten, T. B.;
Lekhi, V. S.; Branda, N. R. J. Am. Chem. Soc. 2005, 127, 7272 (c) Kelly,
T. R.; Sestelo, J. P.; Tellitu, I. J. Org. Chem. 1998, 63, 3655.
(8) (a) Moorthy, J. N.; Venkatakrishnan, P.; Savitha, G.; Weiss, R. G.
Photochem. Photobiol. Sci. 2006, DOI: 10.1039/b606027g.
(5) Urbano, A. Angew. Chem., Int. Ed. 2003, 42, 3986.
10.1021/ol0619260 CCC: $33.50
© 2006 American Chemical Society
Published on Web 09/21/2006