catalyzed intramolecular arylations of amides with inexpen-
sive aryl chlorides11 were thus far only accomplished with
palladium complexes derived from either electron-rich N-
heterocyclic carbenes or phosphine PCy3, as developed by
Hartwig.12
At the outset of our studies we probed representative air-
stable SPO preligands in the palladium-catalyzed intramo-
lecular R-arylation of amide 1a (Table 1).
In recent years, secondary phosphine oxides (SPO) were
introduced as air-stable preligands for transition metal-
catalyzed cross-coupling reactions (Scheme 1).13,14 During
Table 1. Air-Stable Secondary Phosphine Oxide Preligands 3
for the R-Arylation of Amide 1aa
Scheme 1. Tautomerization and Complex Formation of
Secondary Phosphine Oxide (SPO) Preligands
our studies on the development of heteroatom-substituted
secondary phosphine oxide (HASPO) preligands for catalytic
cross-coupling chemistry,15,16 we observed that SPOs17 can
be employed as preligands for palladium-catalyzed R-ary-
lations. Herein, we wish to report on these findings, which
involve intramolecular arylations of amides with unactivated
aryl chlorides for the synthesis of substituted (aza)oxindoles.
(10) (a) Shaughnessy, K. H.; Hamann, B. C.; Hartwig, J. F. J. Org.
Chem. 1998, 63, 6546–6553. (b) For a recent application to a catalytic
reaction sequence, see: Millemaggi, A.; Perry, A.; Whitwood, A. C.; Taylor,
R. J. K. Eur. J. Org. Chem. 2009, 2947–2952.
a Reaction conditions: 1a (0.50 mmol), Pd(OAc)2 (5.0 mol %), preligand
(10 mol %), NaOt-Bu (1.2 mmol), 1,4-dioxane (2.0 mL), 18 h; yields of
isolated product. b GC-conversion. c PhMe (2.0 mL) as solvent. d 20 mmol
scale.
(11) (a) Littke, A. F. In Modern Arylation Methods; Ackermann, L.,
Ed.; Wiley-VCH: Weinheim, Germany, 2009; pp 25-68. (b) Bedford, R. B.;
Cazin, C. S. J.; Holder, D. Coord. Chem. ReV. 2004, 248, 2283–2321.
(12) (a) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402–3415.
See also: (b) Zhang, T. Y.; Zhang, H. Tetrahedron Lett. 2002, 43, 193–
195. (c) Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Chem.
Commun. 2002, 2704–2705. (d) Ku¨ndig, E. P.; Seidel, T. M.; Jia, Y.-X.;
Bernardinelli, G. Angew. Chem., Int. Ed. 2007, 46, 8484–8487. (e) Luan,
X.; Mariz, R.; Robert, C.; Gatti, M.; Blumentritt, S.; Linden, A.; Dorta, R.
Org. Lett. 2008, 10, 5569–5572, and references cited therein.
Unfortunately, aryl-substituted SPOs 3a and 3b provided
unsatisfactory results, even when bearing sterically demand-
ing substituents (entries 2, and 3). Catalysts generated in situ
from sterically hindered alkyl-substituted SPOs 3c and 3d
displayed significantly improved activities, with (1-
Ad)2P(O)H (3d)18 providing superior results (entries 4 and
5). A comparable catalytic efficacy was observed when
conducting reactions in toluene as solvent (entry 6). Likewise,
a reaction performed on larger scale proceeded efficiently
(entry 7). It is noteworthy that a valuable asset of preligand
3d is represented by its nonhygroscopic nature, which renders
its handling more convenient, when being compared with
preligand 3c.
(13) For reviews, see: (a) Ackermann, L. Synthesis 2006, 1557–1571.
(b) Ackermann, L.; Born, R.; Spatz, J. H.; Althammer, A.; Gschrei, C. J.
Pure Appl. Chem. 2006, 78, 209–214. (c) Ackermann, L. In TriValent
Phosphorus Compounds in Asymmetric Catalysis, Synthesis and Applica-
tions; Bo¨rner, A., Ed.; Wiley-VCH: Weinheim, Germany, 2008; pp
831-847. (d) Ackermann, L.; Althammer, A. Chem. Unserer Zeit 2009,
43, 74–83
.
(14) For representative examples of SPO preligands in catalytic cross-
coupling reactions, see: (a) Yang, D. X.; Colletti, S. L.; Wu, K.; Song, M.;
Li, G. Y.; Shen, H. C. Org. Lett. 2009, 11, 381–384. (b) Xu, H.; Ekoue-
Kovi, K.; Wolf, C. J. Org. Chem. 2008, 73, 7638–7650. (c) Wolf, C.; Xu,
H. J. Org. Chem. 2008, 73, 162–167. (d) Billingsley, K. L.; Buchwald,
S. L. Angew. Chem., Int. Ed. 2008, 47, 4695–4698. (e) Zhang, Z.; Hu, Z.;
Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He, R. Tetrahedron Lett. 2007, 48,
2415–2419. (f) Lerebours, R.; Wolf, C. Org. Lett. 2007, 9, 2737–2740. (g)
Lerebours, R.; Wolf, C. J. Am. Chem. Soc. 2006, 128, 13052–13053. (h)
Lerebours, R.; Camacho-Soto, A.; Wolf, C. J. Org. Chem. 2005, 70, 8601–
8604. (i) Wolf, C.; Lerebours, R. Org. Lett. 2004, 6, 1147–1150. (j) Li,
G. Y. J. Org. Chem. 2002, 67, 3643–3650. (k) Li, G. Y. Angew. Chem.,
With an optimized catalytic system in hand, we explored
its scope in the R-arylation of differently substituted amides
1 (Table 2). Notably, a variety of intramolecular arylations
were achieved with chlorides as electrophiles, giving access
to substituted oxindoles 2 (entries 1-13). Notably, the use
of less expensive PdCl2 as palladium precursor gave rise to
a comparable isolated yield of oxindole 2i (entries 9 and
10). Further, preligand 3d enabled the palladium-catalyzed
R-arylation with chloride 1m (entry 14) yielding a 3-alkoxy-
substituted oxindole, which constitutes an indispensable core
structure of a wide range of biologically active compounds.2
Int. Ed. 2001, 40, 1513–1516
.
(15) Ackermann, L. Synlett 2007, 507–526
.
(16) For selected examples, see: (a) Ackermann, L.; Barfu¨ꢀer, S. Synlett
2009, 808–812. (b) Ackermann, L.; Althammer, A. Org. Lett. 2006, 8, 3457–
3460. (c) Ackermann, L.; Gschrei, C. J.; Althammer, A.; Riederer, M. Chem.
Commun. 2006, 1419–1421. (d) Ackermann, L.; Althammer, A.; Born, R.
Angew. Chem., Int. Ed. 2006, 45, 2619–2622. (e) Ackermann, L.; Born,
R.; Spatz, J. H.; Meyer, D. Angew. Chem., Int. Ed. 2005, 44, 7216–7219.
(f) Ackermann, L.; Born, R. Angew. Chem., Int. Ed. 2005, 44, 2444–2447
.
(17) For the use of a diaminochlorophosphine for palladium-catalyzed
R-arylations, see: Ackermann, L.; Spatz, J. H.; Gschrei, C. J.; Born, R.;
Althammer, A. Angew. Chem., Int. Ed. 2006, 45, 7627–7630.
Org. Lett., Vol. 11, No. 19, 2009
4275