A. Velavan, S. Sumathi, K. K. Balasubramanian
FULL PAPER
[12] J. A. Gautier, M. Miocque, C. C. Farnoux, in: The Chemistry
of Amidines and Imidates (Ed.: S. Patai), Wiley, London, 1975,
p. 283.
192–194 °C. IR (KBr): ν
= 3390 (br), 1582, 1558, 1519, 1242,
˜
max
1143, 1092 cm–1. 1H NMR (300 MHz, TMS, [D6]DMSO): δ =
13.0–9.5 (br., 2 H), 8.07 (s, 1 H), 7.61–7.45 (m, 6 H), 7.22–7.10 (m,
2 H) ppm. 13C NMR (75 MHz, TMS, [D6]DMSO): δ = 170.3,
140.2, 137.1, 133.9, 130.9, 129.3, 128.8, 128.2, 125.6, 122.2, 121.3,
120.5, 114.3, 112.0 ppm. HRMS (ESI): m/z calcd. for C15H12ClN2
[M + H]+ 255.0683; found 255.0686.
[13] V. G. Granik, Usp. Khim. 1983, 52, 669; Chem. Abstr. 1983, 99,
405265.
[14] P. J. Dunn, in: Comprehensive Organic Functional Group Trans-
formations II, vol. 5, Elsevier, Oxford, UK, 2005, p. 655–699.
[15] K. Ostrowska, A. Kolasa, in: Science of Synthesis, vol. 22,
Thieme, Stuttgart, Germany, 2005, p. 379–488.
[16] a) A. A. Aly, A. M. Nour-El-Din, ARKIVOC (Gainesville, FL,
U.S.) 2008, 153–194, and references cited therein; b) H. Soll,
Methoden Org. Chem. (Houben-Weyl) 1958, 9, 39.
[17] For recent heterocycle syntheses from amidines, see: a) S. K.
Alla, R. K. Kumar, P. Sadhu, T. Punniyamurthy, Org. Lett.
2013, 15, 1334–1337; b) D. Tejedor, S. López-Tosco, F. García-
Tellado, J. Org. Chem. 2013, 78, 3457–3463.
[18] R. Roger, D. G. Neilson, Chem. Rev. 1961, 61, 179.
[19] F. C. Schaefer, G. A. Peters, J. Org. Chem. 1961, 26, 412.
[20] S. Caron, L. Wei, J. Douville, A. Ghosh, J. Org. Chem. 2010,
75, 945–947.
[21] R. T. Boere, R. T. Oakley, R. W. Reed, J. Organomet. Chem.
1987, 331, 161–167.
(5-Chloro-1H-indol-1-yl)(4-chlorophenyl)methanimine (31c): Crude
material was washed with hexane; yield 290 mg (81%); light-pink
solid; m.p. 189–191 °C. IR (KBr): ν
= 3110, 1583, 1556, 1436,
˜
max
1236, 1092 cm–1. 1H NMR (300 MHz, TMS, [D6]DMSO): δ =
11.77 (s, 1 H), 9.78 (s, 1 H), 8.24–8.23 (m, 1 H), 7.61–7.46 (m, 6
H), 7.20 (dd, J = 8.7, 1.8 Hz, 1 H) ppm. 13C NMR (100 MHz,
TMS, CDCl3, [D6]DMSO): δ = 172.2, 139.9, 135.7, 135.5, 131.3,
129.1, 128.6, 127.0, 126.8, 123.2, 121.0, 115.2, 112.9 ppm. HRMS
(ESI): m/z calcd. for C15H11Cl2N2 [M + H]+ 289.0293; found
289.0299.
(4-Chlorophenyl)(2-phenyl-1H-indol-1-yl)methanimine (32c): Crude
material was washed with hexane to give 32c; yield 321 mg (83%);
yellow solid; m.p. 185–188 °C. IR (KBr): ν
= 3401 (br), 3062,
˜
[22] P. A. Koutentis, S. Mirallai, Tetrahedron 2010, 66, 5134–5139,
max
1589, 1557, 1486, 1454, 1435, 1236, 1087, 1012 cm–1. 1H NMR
(300 MHz, TMS, [D6]DMSO): δ = 11.87 (s, 1 H), 10.46 (s, 1 H),
7.62 (d, J = 8.1 Hz, 2 H), 7.50–7.48 (m, 3 H), 7.39–7.21 (m, 6 H),
7.18 (t, J = 7.8 Hz, 1 H), 7.03 (t, J = 7.5 Hz, 1 H) ppm. 13C NMR
(75 MHz, TMS, [D6]DMSO): δ = 171.0, 138.7, 137.3, 136.4, 135.3,
132.0, 130.1, 128.9, 128.5, 128.4, 128.1, 122.8, 120.6, 119.7, 112.4,
112.1 ppm. HRMS (ESI): m/z calcd. for C21H16ClN2 [M + H]+
331.0996; found 331.1003.
and references cited therein.
[23] R. S. Garigipati, Tetrahedron Lett. 1990, 31, 1969–1972.
[24] B. L. Korbad, S.-H. Lee, Bull. Korean Chem. Soc. 2013, 34,
1266–1268.
[25] R. A. Moss, W. Ma, D. C. Merrer, S. Xue, Tetrahedron Lett.
1995, 36, 8761–8764.
[26] D. A. Burnett, W.-L. Wu, M. S. Domalski, M. A. Caplen, R.
Spring, J. E. Lachowicz, U. S. Pat. Appl. Publ., 20050137210,
2005.
[27] A. B. Charette, B. Grenon, Tetrahedron Lett. 2000, 41, 1677–
(5-Chloro-1H-indol-3-yl)-(4-chlorophenyl)methanone (34c): Yield
1680.
89%; pink solid; m.p. 233–236 °C. IR (KBr): ν
= 3159, 1590,
˜
max
[28] A. R. Katritzky, C. Cai, S. K. Singh, J. Org. Chem. 2006, 71,
3375–3380, and references cited therein.
1559, 1511, 1438, 1211 cm–1. 1H NMR (300 MHz, TMS, [D6]-
DMSO): δ = 12.33 (br.,1 H), 8.24 (s, 1 H), 8.09 (s, 1 H), 7.83 (d, J
= 8.4 Hz, 2 H), 7.20 (m, 3 H), 7.30 (d, J = 8.7 Hz, 1 H) ppm. 13C
NMR (75 MHz, TMS, [D6]DMSO): δ = 188.4, 138.6, 137.1, 136.0,
135.2, 130.2, 128.4, 127.3, 126.7, 123.2, 120.5, 114.3, 113.8 ppm.
HRMS (ESI): m/z calcd. for C15H10Cl2NO [M + H]+ 290.0133;
found 290.0139.
[29] V. Das, A. J. Thakur, Tetrahedron Lett. 2013, 54, 4164–4166.
[30] a) W. A. Loughlin, I. D. Jenkins, M. J. Petersson, J. Org. Chem.
2013, 78, 7356–7361; b) N. Kumagai, S. Matsunaga, M. Shiba-
saki, Angew. Chem. Int. Ed. 2004, 43, 478–482; Angew. Chem.
2004, 116, 484; c) M. Hellal, F. Bihel, A. Mongeot, J.-J. Bourg-
uignon, Org. Biomol. Chem. 2006, 4, 3142–3146.
[31]
H. K. Lee, L. N. Ten, C. S. Pak, Bull. Korean Chem. Soc. 1998,
19, 1148–1149.
Supporting Information (see footnote on the first page of this arti-
cle): Copies of the 1H and 13C NMR spectra for all key intermedi-
ates and final products.
[32]
[33]
J. Wang, F. Xu, T. Cai, Q. Shen, Org. Lett. 2008, 10, 445–448.
T. Cai, X. Chen, F. Xu, Y. Zhang, Y. Yao, Q. Shen, J. Or-
ganomet. Chem. 2009, 694, 3167–3171.
[34]
a) J. Rydfjord, F. Svensson, A. Trejos, P. J. R. Sjöberg, C. Sköld,
J. Sävmarker, L. R. Odell, M. Larhed, Chem. Eur. J. 2013, 19,
13803–13810; b) J. Sävmarker, J. Rydfjord, J. Gising, L. R. Od-
ell, M. Larhed, Org. Lett. 2012, 14, 2394–2397.
a) A. Velavan, S. Sumathi, K. K. Balasubramanian, Org. Bio-
mol. Chem. 2012, 10, 6420–6431; b) A. Velavan, S. Sumathi,
K. K. Balasubramanian, Eur. J. Org. Chem. 2013, 3148–3157.
J. L. Wood, N. A. Khatri, S. M. Weinreb, Tetrahedron Lett.
1979, 20, 4907–4910.
H. Gielen, C. Alonso-Alija, M. Hendrix, U. Niewöhner, D.
Schauss, Tetrahedron Lett. 2002, 43, 419–421.
a) A. Basha, M. Lipton, S. M. Weinreb, Tetrahedron Lett. 1977,
48, 4171; b) J. Li, K. Subramaniam, D. Smith, J. X. Qiao, J. J.
Li, J. Qian-Cutrone, J. F. Kadow, G. D. Vite, B.-C. Chen, Org.
Lett. 2012, 14, 214–217.
[1] K. Nagasawa, in: Superbases for Organic Synthesis, Wiley,
Chichester, UK, 2009, p. 211–250.
[2] S. L. Desset, D. J. Cole-Hamilton, Angew. Chem. Int. Ed. 2009,
48, 1472–1474; Angew. Chem. 2009, 121, 1500.
[3] L. Phan, D. Chiu, D. J. Heldebrant, H. Huttenhower, E. John,
X. Li, P. Pollet, R. Wang, C. A. Eckert, C. L. Liotta, P. G. Jes-
sop, Ind. Eng. Chem. Res. 2008, 47, 539–545.
[4] M. Ikeda, Y. Tanaka, T. Hasegawa, Y. Furusho, E. Yashima,
J. Am. Chem. Soc. 2006, 128, 6806–6807.
[35]
[36]
[37]
[38]
[5] F. T. Edelmann, Adv. Organomet. Chem. 2008, 57, 183–352.
[6] M. P. Coles, Dalton Trans. 2006, 985–1001.
[7] F. T. Edelmann, Chem. Soc. Rev. 2009, 38, 2253–2268.
[8] P. D. Edwards, J. S. Albert, M. Sylvester, D. Aharony, D. Andi-
sik, O. Callaghan, J. B. Campbell, R. A. Carr, G. Chessari, M.
Congreve, M. Frederickson, R. H. A. Folmer, S. Geschwind-
ner, G. Koether, K. Kolmodin, J. Krumrine, R. C. Mauger,
C. W. Murray, L.-L. Olsson, S. Patel, N. Spear, G. Tian, J. Med.
Chem. 2007, 50, 5912–5925.
[9] L. Peterlin-Masic, D. Kikelj, Tetrahedron 2001, 57, 7073–7105.
[10] S. D. Guile, L. Alcaraz, T. N. Birkinshaw, K. C. Bowers, M. R.
Ebden, M. Furber, M. J. Stocks, J. Med. Chem. 2009, 52, 3123–
3141.
[39]
L. Gremaud, A. Alexakis, Angew. Chem. Int. Ed. 2012, 51,
794–797.
[40]
[41]
F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456–463.
a) E. K. Styron, C. H. Lake, D. H. Powell, L. K. Krannich,
C. L. Watkins, J. Organomet. Chem. 2002, 649, 78; b) D. R.
Armstrong, F. J. Craig, A. R. Kennedy, R. E. Mulvey, Chem.
Ber. 1996, 129, 1293; c) B. Németh, J.-P. Guégan, T. Veszprémi,
J.-C. Guillemin, Inorg. Chem. 2013, 52, 346–354.
[11] J. V. Greenhill, P. Lue, Prog. Med. Chem. 1993, 30, 203–326.
5814
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 5806–5815