U. Azzena et al. / Journal of Organometallic Chemistry 692 (2007) 3892–3900
3899
[6] For a review on synthetic equivalents of acetylene in cycloaddition
reactions, see: De O. Lucchi, G. Modena, Tetrahedron 40 (1984)
2585–2632.
[7] D. Georgin, F. Taran, C. Mioskowski, Chem. Phys. Lipids 125
(2003) 83–91.
[8] (a) A. Baldan, A. Tassan, Synth. Commun. 35 (2005) 1447–1453;
(b) A. Baldan, Synth. Commun. 34 (2004) 1229–1235.
[9] (a) L.A. Totten, U. Jans, A.L. Roberts, Environ. Sci. Technol. 35
(2001) 2268–2274, and references therein;
(b) E.C. Butler, K.F. Hayes, Environ. Sci. Technol. 34 (2000) 422–429.
[10] U. Azzena, G. Dettori, C. Lubinu, A. Mannu, L. Pisano, Tetrahedron
61 (2005) 8663–8668.
[11] (a) Ethene is a reasonable co-product of this reaction, but its
formation was never ascertained J.W.B. Reesor, J.G. Smith, G.F.
Wright, J. Org. Chem. 19 (1954) 940–956;
(b) U. Azzena, G. Dettori, M.V. Idini, L. Pisano, G. Sechi,
Tetrahedron 59 (2003) 7961–7966.
[12] (a) C.E. Barry III, R.B. Bates, W.A. Beavers, F.A. Camou, B.
Gordon III, H.F.-J. Hsu, N.S. Mills, C.A. Ogle, T.J. Siahaan, K.
Suvannachut, S.R. Taylor, J.J. White, K.M. Yager, Synlett (1991)
207–212, and references therein;
dianions 1a and 1 c; AcOEt for reactions run with dianion
1b). The organic phase was washed with brine (10 mL)
then, in case of reactions with 1 c, with 1 N HCl
(3 · 10 mL), dried (Na2SO4) and the solvent evaporated.
Crude products were purified by flash chromatography
(Petroleum ether/AcOEt). However, all products obtained
from reactions run with dianion 1c (i.e., 3a–d, 3g, 3j, 3l) as
well as phenol 3e and carboxylic acids 3f, 3m and 3n can be
efficiently purified by acid–base washings.
Reaction products 3 and 4 were recognized by compar-
ison with commercially available samples (3a–c, 3f, Z-3g,
3h, Z-3i, 3j) or with literature data [30]. When necessary,
the stereochemistry of reaction products was assigned by
comparison with commercially available samples and/or
literature data [30]. Diastereoisomeric mixtures of acid
3g, as obtained according to the general reductive elimina-
tion procedure, were dissolved in CH2Cl2 and treated with
diazomethane, according to the literature [31]; the resulting
mixtures, containing the corresponding methyl esters, were
analyzed by GC-MS to determine their diastereoisomeric
compositions.
(b) J.G. Smith, E. Oliver, T.J. Boettger, Organometallics 2 (1983)
1577–1582;
(c) J.G. Smith, J.R. Talvitie, A.R.E. Eix, J. Chem. Soc., Perkin
Trans. 1 (1975) 1474–1479.
[13] U. Azzena, M. Pittalis, G. Dettori, S. Madeddu, E. Azara, Tetrahe-
dron Lett. 47 (2006) 1055–1058.
[14] The residual metal is usually recovered as a single piece, which can be
washed with a dry solvent (Et2O or THF), weighed, and recycled to a
successive reaction.
Acknowledgement
`
Financial support from the Universita di Sassari (Fondo
[15] Accordingly, trans-stilbazole can be recovered and purified by flash-
chromatography (AcOEt/Petroleum Ether = 4:6) in 60–65% yield.
[16] (a) 2-Allyloxyphenol, 3e, is a pyrocathecol monoprotected with a
group known to be unstable under reductive electron transfer reaction
conditions. J.J. Eisch, A.M. Jacobs, J. Org. Chem. 28 (1963) 2145–
2146;
(b) E. Alonso, D.J. Ramon, M. Yus, Tetrahedron 53 (1997) 14355–
14368.
[17] M. Makosza, K. Grela, Synlett (1997) 267–268, and references
therein.
[18] T.W. Greene, P.G. Wuts, Protective Groups in Organic Synthesis,
third ed., Wiley, New York, 1999, pp. 397–398.
[19] A.J. Pearson, K. Lee, J. Org. Chem. 59 (1994) 2257–2260, and
references therein.
[20] See Ref. [1b] for a comparison between these mechanisms. See Ref.
[1i] for an in-depth discussion on competitive ‘‘inner-‘‘ and ‘‘outer-
sphere’’ redox processes.
di Ateneo) is gratefully acknowledged.
References
[1] (a) For a list of reagents employed in reductive dehalogenation, see:
R.C. Larock, Comprehensive Organic Transformation, VCH Pub-
lishers, New York, 1989, pp. 133–135;
(b) For a review, see: E. Baciocchi, in: S. Patai, Z. Rappoport (Eds.),
The Chemistry of Functional Groups, Supplement D, Part I, Wiley,
New York, 1983, pp. 161–201;
´
(c) For a selection of relevant literature, see: J.M. Concellon, H.
´
Rodrıguez-Solla, Chem. Soc. Rev. 33 (2004) 599–609;
(d) B.C. Ranu, A. Das, A. Hajra, Synthesis (2003) 1012–1014;
(e) T.S. Butcher, M.R. Detty, J. Org. Chem. 63 (1998) 177–180;
(f) Y. Takagughi, A. Hosokawa, S. Yamada, J. Motoyoshiya, H.
Aoyama, J. Chem. Soc., Perkin Trans. 1 (1998) 3147–3149;
(g) C. Malanga, S. Mannucci, L. Lardicci, Tetrahedron 54 (1998)
1021–1028;
(h) R. Yanada, N. Negoro, K. Yanada, T. Fujita, Tetrahedron Lett.
37 (1996) 9313–9316;
(i) T. Lund, C. Bjørn, H.S. Hansen, A.K. Jensen, T.K. Thorsen,
Acta Chem. Scand. 47 (1993) 877–884;
(j) D. Landini, L. Milesi, M.L. Quadri, F. Rolla, J. Org. Chem. 49
(1984) 152–153;
(k) D. Savoia, E. Tagliavini, C. Trombini, A. Umani-Ronchi, J. Org.
Chem. 47 (1982) 876–879;
(l) J.F. Garst, J.A. Pacifici, V.D. Singleton, M.F. Ezzel, J.I. Morris,
J. Am. Chem. Soc. 97 (1975) 5242;
´
[21] C.P. Andrieux, A. Le Gorande, J.-M. Saveant, J. Am. Chem. Soc.
114 (1992) 6892–6904, and references therein.
[22] a-Bromine-substituted radical intermediates are considered to be
configurationally stabilized by bromine bridging. See Ref. [9a].
[23] J. Sicher, M. Havel, M. Svoboda, Tetrahedron Lett. 9 (1968) 4269–
4272.
[24] Na in THF: H.O. House, R.S. Ro, J. Am. Chem. Soc. 80 (1958) 182–
187.
[25] Na naphthalenide in 1,2-dimethoxyethane H.R. Pfaendler, F.X.
Muller, Synthesis (1992) 350–352, and references therein.
¨
[26] Na in liq. NH3: E.L. Allred, B.R. Beck, K.J. Voorhees, J. Org. Chem.
39 (1974) 1426–1427.
[27] K graphite, C8K: M. Rabinovitz, B. Tamarkin, Synth. Commun. 14
(1984) 377–379.
[28] (a) Literature references to starting materials: 2b: R.C. Fahey, H.-J.
Schneider, J. Am. Chem. Soc. 90 (1968) 4429–4434;
(b) 2c: S.J. Lapporte, L.L. Ferstandig, J. Org. Chem. 26 (1961) 3681–
3685;
(m) W. Adam, J. Arce, J. Org. Chem. 37 (1972) 507–508.
[2] D.W. Young, in: J.F.W. McOmie (Ed.), Protective Groups in
Organic Chemistry, Plenum Press, London, 1973, pp. 309–320.
[3] See, for example: L.F. Fieser, M. Fieser, Advanced Organic Chemistry,
Reinhold Publishing Corporation, New York, 1961, pp. 163–165.
[4] [2+2] cycloadditions: H.O. House, T.H. Cronin, J. Org. Chem. 30
(1965) 1061–1070.
(c) 2d: see Ref. [24];
(d) 2e: S.D. Higgins, C.B. Thomas, J. Chem. Soc. Perkin Trans. 1
(1982) 235–242;
[5] [4+2] cycloadditions: S.J. Cristol, N.L. Hause, J. Am. Chem. Soc. 74
(1952) 2193–2197.