2384
E.W. Ainscough et al. / Inorganica Chimica Acta 357 (2004) 2379–2384
[2] G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehen-
sive Coordination Chemistry: The Synthesis Reactions, Properties
and Applications of Coordination Compounds, vol. 4, Pergamon
Press, Oxford, 1987, p. 913.
ture factors. The temperature factors of related carbon
atom pairs [C(31) C(41), C(32) C(42), etc.] were con-
strained to be equal. The asymmetric unit contains two
chlorine atoms (sof 0.5), which are also disordered
around the C2 axis (pointing to the presence of lattice
[3] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann,
Advanced Inorganic Chemistry, sixth ed., Wiley, New York,
1999, p. 1041.
ꢀ
HCl). The atoms, Cl(1) and Cl(2), are 3.305 A apart
indicating a hydrogen bond between the two (the dis-
[4] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann,
Advanced Inorganic Chemistry, sixth ed., Wiley, New York,
1999, pp. 1041–1042.
ꢀ
tance of 2.827 A for the symmetry equivalent of Cl(2)
seems too short – published Cl–Hꢀ ꢀ ꢀCl distances lie
[5] T.E. Nappier Jr., D.W. Meek, R.M. Kirchner, J.A. Ibers, J. Am.
Chem. Soc. 95 (1973) 4194.
ꢀ
around 3.2–3.3 A). The most likely position for this
[6] J.A. Tiethof, J.L. Peterson, D.W. Meek, Inorg. Chem. 15 (1976)
1365.
hydrogen was found at the later stages of the refinement
as Q3 and refined labelled H(1). This appears chemically
sensible, however, due to the disorder of the chlorine
atoms, this assignment has to be regarded with caution.
Crystal data for C38H30Cl2NOP2Rh: M ¼ 752:38,
monoclinic, space group C2/c, a ¼ 20:0936ð1Þ; b ¼
[7] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann,
Advanced Inorganic Chemistry, sixth ed., Wiley, New York,
1999, p. 1042.
[8] G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehen-
sive Coordination Chemistry: The Synthesis Reactions, Properties
and Applications of Coordination Compounds, vol. 4, Pergamon
Press, Oxford, 1987, p. 1028.
ꢀ
19:3859ð1Þ, c ¼ 8:9418ð1Þ A, b ¼ 92:227ð1Þ°; V ¼
3
ꢀ
3480:49ð5Þ A , Z ¼ 4; T ¼ 200ð2Þ K, Dcalc ¼ 1:436 g
cmꢁ1, F ¼ 1528, l(Mo Ka) 0.767 mmꢁ1, 10 561 reflec-
tions collected (2:92° < 2h < 54:92°), of which 3804
were unique Rint ¼ 0:0227). Data were corrected for
absorption effects; Tmax ¼ 0:8807; Tmin ¼ 0:7389. The
final R1½I > 2rIÞꢃ ¼ 0:0326; wR2½I > 2rIÞꢃ ¼ 0:0887; R1
(all data) ¼ 0.0385, wR2 (all data) ¼ 0.0922.
[9] H.F. Haarman, J.M. Ernsting,, M. Kranenburg, H. Kooijman, N.
Veldman, A.L. Speck, P.W.N.M. van Leeuwen, K. Vrieze,
Organometallics 16 (1997) 887 (and references therein).
[10] T.B. Marder, W.C. Fultz, J.C. Calabrese, R.L. Harlow, D.
Milstein, J. Chem. Soc., Chem. Commun. (1987) 1543.
[11] (a) E.W. Ainscough, A.M. Brodie, P.D. Buckley, A.K. Burrell,
S.M.F. Kennedy, J.M. Waters, J. Chem. Soc., Dalton Trans.
(2000) 2663;
(b) E.W. Ainscough, A.M. Brodie, A.K. Burrell, X. Fan, M.J.R.
Halstead, S.M.F. Kennedy, J.M. Waters, Polyhedron 19 (2000)
2585;
5. Supplementary material
(c) E.W. Ainscough, A.M. Brodie, A.K. Burrell, S.M.F. Kennedy,
J. Am. Chem. Soc. 123 (2001) 10391;
CCDC 215017 contains the supplementary crystal-
lographic data for this paper. These data can be ob-
graphic Data Centre, 12, Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033; or E-mail: data_re-
quest@ccdc.cam.ac.uk).
(d) E.W. Ainscough, A.M. Brodie, A.K. Burrell, S.M.F. Kennedy,
J. Organomet. Chem. 609 (2000) 2.
[12] M.L. Edwards, Rhodium(I) complexes of a tridentate hybrid
phosphine-amine ligand: catalytic implications of trans-phospho-
rus geometry, BSc(Hons) Dissertation (1984) University of
Sydney.
[13] M.P. Anderson, C.C. Tso, B.M. Mattson, L.H. Pignolet, Inorg.
Chem. 22 (1983) 3267.
[14] A. Heßler, J. Fischer, S. Kucken, O. Stelzer, Chem. Ber. 127
(1994) 481.
Acknowledgements
[15] C. Hahn, J. Sieler, R. Taube, Polyhedron 17 (1998) 1183.
[16] K. Kashiwabara, A, Morikawa, T. Suzuki, K. Isobe, K. Tatsumi,
J. Chem. Soc., Dalton Trans. (1997) 1075.
We thank Associate Professor C.F. Rickard, Uni-
versity of Auckland for X-ray data collection, Dr. P.A.
Duckworth, University of Sydney for a copy of [12],
Professor G.B. Jameson for useful discussions and the
Massey University Research Fund for financial support.
[17] P. Paul, B. Tyagi, Polyhedron 15 (1996) 675 (and references
therein).
[18] S. Berger, S. Braun, H.-O. Kalinowski, NMR Spectroscopy of the
Non-Metallic Elements, Wiley, Chichester, 1997, p. 837.
[19] G. Dyer, J. Roscoe, Inorg. Chem. 35 (1996) 4098 (and references
therein).
[20] J. Mason (Ed.), Multinuclear NMR, Plenum Press, New York,
1987, p. 394.
References
[21] G. Giordano, R.H. Crabtree, Inorg. Synth. 19 (1979) 218.
[22] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory
Chemicals, third ed., Pergamon Press, Oxford, 1988.
[23] S.E. Page, K.C. Gordon, A.K. Burrell, Inorg. Chem. 37 (1998)
4452.
[1] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann,
Advanced Inorganic Chemistry, sixth ed., Wiley, New York,
1999, 1044.