5112
P.Pahari et al./ Tetrahedron Letters 45 (2004) 5109–5112
Table 2. Comparison of the NMR data of synthetic isopestacin with those of the natural product
Position
1
3
3a
4
5
6
7
7a
8
9, 13
10
11
12
14
1H data of the
natural product
1H data of the
synthetic product
13C data of the
natural product
13C data of the
synthetic product
6.92
6.52
6.64
6.29 (d)
6.96 (t)
6.27 (d)
2.3
J ¼ 8:2 Hz J ¼ 8:2 Hz J ¼ 8:2 Hz
6.29 (d) 6.98 (t) 6.29 (d)
6.93
6.53
6.66
2.32
22.14
22.01
J ¼ 8:1 Hz J ¼ 8:1 Hz J ¼ 8:1 Hz
173.84 77.24 154.87 114.54 149.00 116.53 157.33 111.71 110.32 158.95 107.96
173.70 77.05 154.79 114.38 148.87 116.37 157.19 111.55 110.10 158.82 107.76
131.53
131.41
107.96
107.76
13
178 with anhydrousAlCl
in dichloromethane pro-
6. (a) Danieul, M.-P.; Laursen, B.; Hazell, R.; Skrydstrup, T.
J.Org.Chem. 2000, 65, 6052–6060; (b) Snieckus, V. Chem.
Rev. 1990, 90, 879–933; (c) Owton, W. M. J.Chem.Soc,.
Perkin Trans.1 1994, 2131–2135; (d) Owton, W. M.;
Brunavs, M.; Dobson, D. R.; Steggles, D. J. J.Chem.Soc.,
Perkin Trans.1 1995, 931–934; (e) Falk, H.; Schoppel, G.
Monatsch.Chem. 1991, 122, 739–744; (f) Iwao, M.;
3
vided isopestacin (1) (mp: 269–270 °C; lit.1 mp: 218–
220 °C) in 65% yield. The spectroscopic data (Table 2) of
the synthetic material were in complete agreement with
those1 of the natural product. Additionally, the TLC
behavior of the synthetic compound matched that of an
authentic sample of the natural product.
Kuraishi, T. Bull.Chem.Soc.Jpn.
4060.
1987, 60, 4051–
In conclusion, the first synthesis of isopestacin (1) has
been completed in a regiospecific manner starting from
2,5-dimethylanisole (13). The methodology developed,
that iscyclocondensation of phthalaldehydic acidswith
cyclic 1,3-dionesfollowed by oxidative aromatization
should provide an access to a wide variety of isopestacin
analogs. The feasibility of introducing asymmetric
induction in the cyclocondensation step by the use of
enantiomerically pure amine bases is being explored.
7. (a) Nagarajan, K.; Shenoy, S. J. Indian J.Chem. 1992,
31B, 73–87; (b) Lee, D. Y.; Cho, C. S.; Jiang, L. H.; Wu,
X.; Shim, D. C.; Oh, D. H. Synth.Commun. 1997, 27,
3449–3455; (c) Donati, C.; Prager, R. H.; Weber, B. Aust.
J.Chem. 1989, 42, 787–795.
8. The new compounds gave satisfactory elemental analysis,
EIMS and NMR data. Selected spectral data: compound
8: Mp 215 °C; mmax (KBr, cmꢀ1) 1750; 1H NMR (d6-
DMSO + CDCl3, 200 MHz): d 8.05–7.77 (m, 4H), 7.72 (t,
2H, J ¼ 7:30), 7.59 (t, 1H, J ¼ 7:30), 7.49 (d, 1H,
J ¼ 7:40), 6.18 (d, 1H, J ¼ 2:3), 3.67 (d, 1H, J ¼ 2:3).
13C NMR (d6-DMSO, 125 MHz): d 197.98, 196.55, 170.28,
148.79, 143.01, 142.62, 137.42, 135.39, 131.46,
130.40, 126.10, 125.81, 124.04, 123.83, 123.68, 78.36,
55.92.
Acknowledgements
Compound 9b: Mp 125 °C; mmax (KBr, cmꢀ1) 1752; 1H
NMR (CDCl3, 200 MHz): d 7.90 (d, 1H, J ¼ 7:3), 7.63 (dt,
1H, J ¼ 7:3, 1.0), 7.51 (t, 1H, J ¼ 7:3), 7.28 (dd, 1H,
J ¼ 7:3, 1.0), 6.60 (s, 1H), 2.70–2.50 (m, 4H), 2.15–1.95
(m, 2H), 1.83 (s, 3H).
We are grateful to the CSIR, New Delhi for financial
support of this work. P.P. and B.S. gratefully
acknowledge receipt of Junior Research Fellowships
from the CSIR, New Delhi. We are thankful to Dr.
Samik Nanda of TexasA&M for providing uswith a
few relevant articles. We are also thankful to Professor
G. Strobel for supplying us with an authentic sample of
the natural product.
1
Compound 10: Mp 250 °C; IR mmax (KBr, cmꢀ1) 1732; H
NMR (d6-DMSO + CDCl3, 200 MHz): d 7.41 (s, 1H), 7.06
(t, 1H, J ¼ 7:8), 6.59 (d, 1H, J ¼ 7:8), 6.42 (d, 1H,
J ¼ 7:8), 5.08 (s, 1H), 2.63–2.40 (m, 2H), 2.30–2.15 (m,
2H), 2.0–1.75 (m, 2H). 13C NMR (d6-DMSO, 50 MHz): d
196.50, 169.12, 169.02, 164.79, 156.18, 154.79, 153.11,
141.56, 135.37, 128.81, 122.79, 122.26, 114.79, 114.43,
113.57, 112.45, 111.47, 109.74, 72.99, 36.49, 32.93, 31.38,
26.58, 20.20, 19.56 (mixture of keto and enol forms).
References and notes
1
1. (a) Ford, E.; Strobel, G.; Harper, J. K. PCT Int.Appl.
2003, 59; (b) Strobel, G.; Ford, E.; Worapong, J.; Harper,
J. K.; Arif, A. M.; Grant, D. M.; Fung, P. C. W.; Chau, R.
M. W. Phytochemistry 2002, 60, 179–183.
2. Harper, J. K.; Arif, A. M.; Ford, E.; Strobel, G.; Porco, J.
A., Jr.; Tomer, D. P.; Oneill, K. L.; Heider, E. M.; Grant,
D. M. Tetrahedron 2003, 59, 2471–2476.
Compound 17: Mp 304 °C; IR mmax (KBr, cmꢀ1) 1723; H
NMR (d6-DMSO + CDCl3, 200 MHz): d 8.9 (br s, 1H),
6.82 (t, 1H, J ¼ 8:0), 6.77 (s, 1H), 6.61 (s, 1H), 6.55 (s,
1H), 6.21 (d, 2H, J ¼ 8:0), 3.87 (s, 3H), 2.28 (s, 3H). 13C
NMR (d6-DMSO, 50 MHz): d 168.94, 156.98, 153.80,
146.34, 129.56, 113.75, 111.70, 110.44, 108.47, 106.44,
73.70, 55.20, 21.72.
3. Arnone, A.; Assante, G.; Nasini, G.; Strada, S.; Vercesi,
A. J.Nat.Prod. 2002, 65, 48–50.
4. Kulanthaivel, P.; Hallock, Y. F.; Boros, C.; Hamilton, S.
F.; Janzen, W. P.; Ballas, L. M.; Loomis, C. R.; Jiang, J.
B. J.Am.Chem.Soc. 1993, 115, 6452–6453.
9. Kotnis, A. S. Tetrahedron Lett. 1990, 31, 481–484.
10. Kosower, E. M.; Wu, G. S. J.Org.Chem. 1963, 28, 633–
638.
11. Oliver, J. E.; Wilzer, K. R.; Waters, R. M. Synthesis 1990,
1117–1119.
5. (a) Singh, E.; Gupta, P. C. J.Indian Chem.Soc. 1973, 50,
676–679; (b) Paradkar, M. V.; Ranade, A. A.; Kulkarni,
M. S.; Godbole, H. M.; Joseph, A. R. J.Chem.Res.(S)
1998, 332–333.
12. Khanapure, S. P.; Reddy, R. T.; Biehl, E. R. J.Org.Chem.
1987, 52, 5685–5690.
13. Mal, D.; Roy, H. N. J.Chem.Soc,. Perkin Trans.1
3167–3171.
1999,