(15, 41%) were obtained as a colorless oil, which solidified upon
standing (mp 69–71 ◦C).
16 M. D. Tzirakis, I. N. Lykakis and M. Orfanopoulos, Chem. Soc. Rev.,
2009, 38, 2609.
17 For selective examples of TBADT photocatalyzed reactions, see: D.
Dondi, A. M. Cardarelli, M. Fagnoni and A. Albini, Tetrahedron, 2006,
62, 5527(a) D. Dondi, M. Fagnoni and A. Albini, Chem.–Eur. J., 2006,
12, 4153; (b) S. Angioni, D. Ravelli, D. Emma, D. Dondi, M. Fagnoni
and A. Albini, Adv. Synth. Catal., 2008, 350, 2209; (c) D. Dondi, D.
Ravelli, M. Fagnoni, M. Mella, A. Molinari, A. Maldotti and A. Albini,
Chem.–Eur. J., 2009, 15, 7949.
18 (a) M. D. Tzirakis and M. Orfanopoulos, J. Am. Chem. Soc., 2009, 131,
4063; (b) M. D. Tzirakis and M. Orfanopoulos, Org. Lett., 2008, 10,
873.
15: 1H NMR (CDCl3)41 d 2.8 (t, 2 H, J = 7 Hz), 3.3 (t, 2 H, J =
7 Hz), 3.7 (s, 3 H), 7.4 (dd, 1 H, J = 8, 4 Hz), 8.2 (dt, 1 H, J = 8, 2
Hz), 8.8 (dd, 1 H, J = 4, 2 Hz), 9.2 (d, 1 H, J = 2 Hz); 13C NMR
(CDCl3)41 d 27.6 (CH2), 35.5 (CH2), 51.8 (CH3), 123.5 (CH), 131.7
(C), 135.2 (CH), 149.5 (CH), 153.6 (CH), 172.9, 196.9; IR, (neat)
n/cm-1 1734, 1686; Anal. Calcd. for C10H11NO3: C, 62.17; H, 5.74.
Found: C, 62.2; H, 5.8.
19 S. Esposti, D. Dondi, M. Fagnoni and A. Albini, Angew. Chem., Int.
Ed., 2007, 46, 2531.
20 S. Protti, D. Dondi, M. Fagnoni and A. Albini, Green Chem., 2009, 11,
239.
21 (a) H. Yamamoto, M. Miura, M. Nojima and S. Kusabayashi, J. Chem.
Soc., Perkin Trans. 1, 1986, 173; (b) H. L. Fang, D. M. Meister and R.
L. Swofford, J. Phys. Chem., 1984, 88, 410.
Acknowledgements
Partial support of this work by Murst, Rome is gratefully
acknowledged.
22 Thus, in C6D6 the aliphatic part of the spectrum was best resolved,
allowing to distinguish H-3 (2.88 ppm), H-1 (2.50 ppm), H-4 (2.72
ppm) and H-8 methylene hydrogens (2.70 and 3.50 ppm). One of H-7
hydrogen was separated (1.14 ppm) whereas the second one (1.40 ppm
from COSY correlation) unfortunately overlapped with H-5 and H-
6. Under these conditions, no long-range coupling between H-3 and
one of H-7 which would be diagnostic for H-3 endo was revealed in
either COSY-90 (not reported) or COSY-LR spectra (see ESI†). No
correlation was found between H-3 with H-1 or H-4 in the NOESY
spectrum, whereas the only significant cross peak appeared at 1.4 ppm,
probably involving one of H-7.
References
1 (a) P. Renaud and M. P. Sibi, ed., Radicals in organic synthesis, Wiley-
VCH Weinheim 2001; (b) G. J. Rowlands, Tetrahedron, 2009, 65, 8603;
(c) G. J. Rowlands, Tetrahedron, 2010, 66, 1593.
2 C. Chatgilialoglu, D. Crich, M. Komatsu and I. Ryu, Chem. Rev., 1999,
99, 1991.
3 G. S. C. Srikanth and S. L. Castle, Tetrahedron, 2005, 61, 10377.
4 I. Ryu, K. Kusano, A. Ogawa, N. Kambe and N. Sonoda, J. Am. Chem.
Soc., 1990, 112, 1295.
23 On the basis of the data available in the literature, a tentative assignment
of the endo or exo configuration in 3-alkylsubstituted 2-norbornanones
is possible by comparing the C-5 and C-6 13C-NMR chemical shifts.
Typically, exo derivatives have C-5 at ca. 28 d, C-6 at 23–24 d,24–26
5 (a) D. L. Bogerm and R. J. Mathvink, J. Org. Chem., 1989, 54, 1777;
(b) K. Haraguchi, H. Tanaka and T. Miyasaka, Chem. Lett., 1990,
31, 227; (c) D. L. Boger and R. J. Mathvink, J. Org. Chem., 1992, 57,
1429.
6 (a) C. Chen, D. Crich and A. Papadatos, J. Am. Chem. Soc., 1992, 114,
8313; (b) D. Crich, C. Chen, J.-T. Hwang, H. Yuan, A. Papadatos and
R. I. Walter, J. Am. Chem. Soc., 1994, 116, 8937.
7 (a) C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek,
A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill and M. W. George,
J. Am. Chem. Soc., 2002, 124, 14952; (b) D. Hristova, I. Gatlik, G.
Rist, K. Dietliker, J.-P. Wolf, J.-L. Birbaum, A. Savitsky, K. Mobius
and G. Gescheidt, Macromolecules, 2005, 38, 7714; (c) G. W. Sluggett,
C. Turro, M. W. George, I. V. Koptyug and N. J. Turro, J. Am. Chem.
Soc., 1995, 117, 5148.
26
whereas the endo isomers have C-5 at 21–21.5 d, C-6 at 25–26 d .
24 A. Krotz and G. Helmchen, Liebigs Ann. Chem., 1994, 1994, 601.
25 J.-J. Villenave, R. Jaouhari, M. Baratchart and C. Filiatre, Bull. Soc.
Chim. Belg., 1983, 92, 167.
26 J. B. Stothers, C. T. Tan and K. C. Teo, Can. J. Chem., 1973, 51, 2893.
Erratum p. 2974.
27 The rate constant (in the gas phase at 296 K) of the decarbonylation
of benzoyl radical is around 7.8 ¥ 10-8 s-1. See: R. K. Solly and S. W.
Benson, J. Am. Chem. Soc., 1971, 93, 1592.
28 S. Protti, D. Ravelli, M. Fagnoni and A. Albini, Chem. Commun., 2009,
7351.
29 The environmental impact of the synthesis of aliphatic ketones
starting from aldehydes under TBADT photocatalysis has been recently
evaluated by the EATOS software. This preparation resulted more
environment friendly than the synthesis of the same ketone via a related
radical process where the acyl radical was formed by carbonylation of
an alkyl radical generated from an alkyl iodide by a tin hydride mediated
reaction. See ref. 20.
8 H. Baumann, H.-J. Timpe, V. Egorovicˇ Zubarev, N. Vladimirovna Fok
and M. Jakolevicˇ Meknikow, Z. Chem., 1985, 25, 181.
9 (a) C. E. Brown, A. G. Neville, D. M. Rayner, K. U. Ingold and J.
Lusztyk, Aust. J. Chem., 1995, 48, 363; (b) W. G. Mc Gimpsey and J.
C. Scaiano, J. Am. Chem. Soc., 1987, 109, 2179; (c) A. G. Neville, C. E.
Brown, D. M. Rayner, J. Lusztyk and K. U. Ingold, J. Am. Chem. Soc.,
1991, 113, 1869; (d) A. G. Davies and R. Sutcliff, J. Chem. Soc., Perkin
Trans. 2, 1980, 819.
10 (a) I. Rosenthal, M. M. Mossoba and P. Riesz, Can. J. Chem., 1982,
60, 1486; (b) M. A. Miranda and F. Galindo, Photo-Fries reaction
and related processes in CRC Handbook of Organic Photochemistry
and PhotobiologyW. Horspool and F. Lenci Eds. 2nd edition, 2004,
42-1/42-11 CRC Press.
11 (a) D. J. Coveney, V. F. Patel and G. Pattenden, Tetrahedron Lett.,
1987, 28, 5949; (b) D. J. Coveney, V. F. Patel, G. Pattenden and D. M.
Thompson, J. Chem. Soc., Perkin Trans. 1, 1990, 2721.
12 (a) M. D. Cook and B. P. Roberts, J. Chem. Soc., Chem. Commun.,
1983, 264; (b) C. Chatgilialoglu, D. Lunazzi, D. Macciantelli and G.
Placucci, J. Am. Chem. Soc., 1984, 106, 5252; (c) O. Ito, S. Akiho and
M. Iino, J. Phys. Chem., 1989, 93, 4079; (d) P. Brandi, C. Galli and P.
Gentili, J. Org. Chem., 2005, 70, 9521.
13 (a) H.-S. Dang and B. P. Roberts, J. Chem. Soc., Perkin Trans. 1, 1998,
67; (b) K. Yoshikai, T. Hayama, K. Nishimura, K.-I. Yamada and K.
Tomioka, J. Org. Chem., 2005, 70, 681.
14 (a) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev., 2007,
107, 2725; (b) D. Ravelli, D. Dondi, M. Fagnoni and A. Albini, Chem.
Soc. Rev., 2009, 38, 1999.
15 A. Albini and M. Fagnoni, The greenest reagent in organic synthesis:
light. In Green Chemical ReactionsP. Tundo and V. Esposito, ed.
Springer Science +Business Media B.V. 2008, pp 173-189.
30 S. Xue, L.-Z. Li, Y.-K. Liu and Q.-X. Guo, J. Org. Chem., 2006, 71,
215and references cited therein.
31 (a) S. Mahboobi and W. Wiegrebe, Arch. Pharm., 1988, 321, 175; (b) E.
Langhals, H. Langhals and C. Ru¨chardt, Liebigs Ann. Chem., 1983,
1983, 330; (c) S. S. Hecht, D. K. Hatsukami, L. E. Bonilla and J.
B. Hochalter, Chem. Res. Toxicol., 1999, 12, 172; (d) E. Richter, S.
Friesenegger, J. Engl and A. R. Tricker, Toxicology, 2000, 144, 83.
32 J. M. Aizpurua and C. Palomo, Tetrahedron Lett., 1985, 26, 475.
33 C. K.-W. Kwong, R. Huang, M. Zhang, M. Shi and P. H. Toy, Chem.–
Eur. J., 2007, 13, 2369.
34 S. Huenig and G. Wehner, Chem. Ber., 1980, 113, 324.
35 K. Miura, N. Fujisawa, H. Saito, D. Wang and A. Hosomi, Org. Lett.,
2001, 3, 2591.
36 S. Xue, L.-Z. Li, Y.-K. Liu and Q.-X. Guo, J. Org. Chem., 2006, 71,
215.
37 W. G. Dauben and H. Tilles, J. Org. Chem., 1950, 15, 785.
38 H. Sakurai and K. Narasaka, Chem. Lett., 1994, 2017.
39 R. V. Hoffman and H.-O. Kim, J. Org. Chem., 1995, 60, 5107.
40 E. Langhals, H. Langhals and C. Ru¨chardt, Liebigs Ann. Chem., 1982,
1982, 930.
41 I. Rotrekl, L. Vyklicky´ and D. Dvorˇa´k, J. Organomet. Chem., 2001,
617–618, 329.
4164 | Org. Biomol. Chem., 2010, 8, 4158–4164
This journal is
The Royal Society of Chemistry 2010
©