Lewis Acid Catalyzed Allylboration
mark method in this field belongs to Denmark and co-
workers, who can prepare quaternary carbon centers with
high levels of diastereo- and enantiocontrol using a chiral
bisphosphoramide-catalyzed allylsilation system.13 How-
ever, a significant limitation to this chemistry is that it
is currently only applicable to aromatic aldehydes be-
cause aliphatic aldehydes fail to undergo the desired
allylation.
As reported in a previous communication,14a 2-carboxy-
ester-3,3-disubstituted allylboronates 1 undergo a di-
astereospecific allylation with aldehydes to yield syn-
thetically and biologically useful R-methylene butyro-
lactones 2 which bear a â-stereogenic quaternary carbon
center (eq 1). In retrospect, this preparation presented
us with two significant challenges. The first was the
preparation of the allylboronates 1; previously published
routes to allylboronates either offered poor prospects of
diastereocontrol and substrate generality15 or were long
and cumbersome.11,16 We solved this problem by develop-
F IGURE 1. Type I and II allylation mechanisms.18
ing a general and efficient, two-step, one-pot preparation
of these important starting materials via the carbocu-
pration of alkynoate esters.
The second challenge encountered in this methodology
was the low reactivity of the 2-carboxyester allyl-
boronates 1. Conjugation of the allyl unit to the ester
lowers the nucleophilicity of these allylboronates, and
consequently, aldehyde additions with 1 were quite
sluggish. This reactivity problem prompted us to explore
the possibility of using an external Lewis acid to catalyze
the allylboration.17 Allylboronates are self-activating
Type I reagents, where the allylation reaction is promoted
by internal coordination of the aldehyde to the boron
atom (Figure 1).18 Because of this internal activation,
there would appear to be no need for an external
promoter. Furthermore, an external Lewis acid might
compete with the boron atom for the aldehyde, leading
to a switch from the highly diastereoselective, cyclic, Type
I mechanism to the less selective, open-chain Type II
mechanism. However, this concern turned out to be
unfounded, and in the end we were able to develop the
first successful catalytic system that allows for the
diastereospecific allylation of both aliphatic and aromatic
aldehydes with allylboronates under mild conditions in
reasonable time frames.14b
Here we report the full account of the discovery and
optimization of the Lewis acid catalyzed allylboration,
focusing in particular on the use of this methodology for
the challenging preparation of quaternary carbon centers.
Efforts toward a novel attempt to control the absolute
stereochemistry of the allylboration using a single, car-
boxyester-based chiral auxiliary will be described. The
results of a scope and limitations study on the Lewis acid
catalyzed allylboration reaction are presented, along with
a new catalytic protocol which greatly improves the
efficiency of the addition reaction with aliphatic alde-
hydes. Finally, we describe the extension of this meth-
odology to the preparation of highly substituted butyro-
lactones with three contiguous stereogenic carbons.
(1) (a) Martin, S. F. Tetrahedron 1980, 36, 419-460. (b) Fuji, K.
Chem. Rev. 1993, 93, 2037-2066. (c) Corey, E. J .; Guzman-Perez, A.
Angew. Chem., Int. Ed. 1998, 37, 388-401. (d) Christoffers, J .; Mann,
A. Angew. Chem., Int. Ed. 2001, 40, 4591-4597. (e) Denissova, I.;
Barriault, L. Tetrahedron 2003, 59, 10105-10146.
(2) Romo, D.; Meyers, A. I. Tetrahedron 1991, 47, 9503-9569.
(3) (a) Enders, D.; Zamponi, A.; Raabe, G.; Runsink, J . Synthesis
1993, 725-728. (b) Enders, D.; Zamponi, A.; Scha¨fer, T.; Nu¨bling, C.;
Eichenauer, H.; Demir, A. S.; Raabe, G. Chem. Ber. 1994, 127, 1707-
1721.
(4) (a) Manthorpe, J . M.; Gleason, J . L. Angew. Chem., Int. Ed. 2002,
41, 2338-2341. (b) Manthorpe, J . M.; Gleason, J . L J . Am. Chem. Soc.
2001, 123, 2091-2092.
(5) Spino, C.; Beaulieu, C. Angew. Chem., Int. Ed. 2000, 39, 1930-
1932.
(6) Luchaco-Cullis, C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda,
A. H. Angew. Chem., Int. Ed. 2001, 40, 1456-1460.
(7) (a) Mulzer, J .; Du¨rner, G.; Trauner, D. Angew. Chem., Int. Ed.
Engl. 1996, 35, 2830-2832. (b) Christoffers, J .; Ro¨âler, U.; Werner, T.
Eur. J . Org. Chem. 2000, 701-705. (c) Christoffers, J .; Mann, A. Chem.
Eur. J . 2001, 7, 1014-1027. (d) Enders, D.; Teschner, P.; Raabe, G.;
Runsink, J . Eur. J . Org. Chem. 2001, 4463-4477. (e) Christoffers, J .;
Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688-1690.
(8) Fukuda, Y.-i.; Sasaki, H.; Shindo, M.; Shishido, K. Tetrahedron
Lett. 2002, 43, 2047-2049.
(9) Enders, D.; Knopp, M.; Runsink, J .; Raabe, G. Liebigs Ann. 1996,
1095-1116.
(10) For some examples, see: (a) Schreiber, S. L.; Satake, K. J . Am.
Chem. Soc. 1984, 106, 4186-4188. (b) Denmark, S. E.; Fu, J . Org. Lett.
2002, 4, 1951-1953.
(11) (a) Hoffmann, R. W.; Schlapbach, A. Liebigs. Ann. Chem. 1990,
1243-1248. (b) Sato, M.; Yamamoto, Y.; Hara, S.; Suzuki, A. Tetra-
hedron Lett. 1993, 34, 7071-7074.
(12) (a) Nishigaichi, Y.; Takuwa, A. Tetrahedron Lett. 1999, 40, 109-
112. (b) Skulte, G.; Amsallem, D.; Shabli, A.; Varghese, J . P.; Marek,
I. J . Am. Chem. Soc. 2003, 125, 11776-11777.
(13) (a) Denmark, S. E.; Fu, J . P. Chem. Commun. 2003, 167-170.
(b) For a specific example on the preparation of a quaternary carbon
centre, see: Denmark, S. E.; Fu, J . Org. Lett. 2002, 4, 1951-1953.
(14) (a) Kennedy, J . W. J .; Hall, D. G. J . Am. Chem. Soc. 2002, 124,
898-899. (b) Kennedy, J . W. J .; Hall, D. G. J . Am. Chem. Soc. 2002,
124, 11586-11587.
Resu lts a n d Discu ssion
1.1. P r ep a r a tion of Tetr a su bstitu ted Allylbor -
on a tes a n d Op tim iza tion of E/Z Selectivity. Inspired
by the work of Hoffmann and Schlapbach,11a we decided
to explore a route to tetrasubstituted allylboronates
starting from the carbocupration of alkynoate esters
(Scheme 1). Here, treatment of an alkynoate ester (3)
with a dialkylcuprate would yield alkenylcopper inter-
(15) Roush, W. R. In Stereoselective Synthesis: Methods of Organic
Chemistry (Houben-Weyl), 4th ed.; Helmchen, G., Hoffmann, R. W.,
Mulzer, J ., Schaumann, E., Eds.; Georg Thieme Verlag: Stuttgart,
1995; Vol. E21b, pp 1410-1486.
(16) For some alternate preparations of allylboronates, see: (a)
Falck, J . R.; Bondlela, M.; Ye, J . H.; Cho, S. D. Tetrahedron Lett. 1999,
40, 5647-5650. (b) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. J . Am. Chem.
Soc. 2000, 122, 7122-7123. (c) Yamamoto, Y.; Kurihara, K.; Yamada,
A.; Takahashi, M.; Takahashi, Y.; Miyaura, N. Tetrahedron 2003, 59,
537-542. (d) Ohmura, T.; Yamamoto, Y.; Miyaura, N. Organometallics
1999, 18, 413-416. (e) Goldberg, S. D.; Grubbs, R. H. Angew. Chem.,
Int. Ed. 2002, 41, 807-810. (f) Toure´, B.; Hoveyda, H. R.; Tailor, J .;
Ulaczyk-Lesanko, A.; Hall, D. G. Chem. Eur. J . 2003, 9, 466-474. (g)
Gao, X.; Hall, D. G. J . Am. Chem. Soc. 2003, 125, 9308-9309. (h)
Pietruszka; J . Scho¨ne, N. Angew. Chem., Int. Ed. 2003, 42, 5638-5641.
(i) Ramachandran, P. V.; Pratihar, D.; Biswas, D.; Srivastava, A.;
Reddy, M. V. R. Org. Lett. 2004, 6, 481-484.
(17) For
a recent review on the activation of allylsilanes and
allylboronates, see: Kennedy, J . W. J .; Hall, D. G. Angew. Chem., Int.
Ed. 2003, 42, 4732-4739.
(18) For a discussion of the different types of allylating reagents,
see: (a) Denmark, S. E.; Weber, E. J . Helv. Chim. Acta 1983, 66, 1655-
1660. (b) Denmark, S. E.; Almstead, N. G. In Modern Carbonyl
Chemistry; Otera, J ., Ed.; Wiley-VCH: Weinheim, 2001; pp 299-401.
J . Org. Chem, Vol. 69, No. 13, 2004 4413