10.1002/anie.201802434
Angewandte Chemie International Edition
COMMUNICATION
Santiago, L. Kou, M. S. Sigman, J. Am. Chem. Soc. 2015, 137, 7290; i)
T. Hamasaki, Y. Aoyama, J. Kawasaki, F. Kakiuchi, T.Kochi, J. Am.
Chem. Soc. 2015, 137, 16163; j) Z. M. Chen, M. J. Hilton, M. S. Sigman,
J. Am. Chem. Soc. 2016, 138, 11461; k) H. H. Patel, M. S. Sigman, J.
Am. Chem. Soc. 2016, 138, 14226; l) L. Lin, C. Romano, C. Mazet, J.
Am. Chem. Soc. 2016, 138, 10344; m) S. Dupuy, K.-F. Zhang, A.-S.
Goutierre, O. Baudoin, Angew. Chem. Int. Ed. 2016, 55, 14793; n) Z.-M.
Chen, C. S. Nervig, R. J. DeLuca, M. S. Sigman, Angew. Chem. Int. Ed.
2017, 56, 6651; o) S. Singh, J. Bruffaerts, A. Vasseur, I. Marek, Nat.
Commun. 2017, 8, 14200.
required. Gratifyingly, the introduction of a catalytic amount of
CuCl•2LiCl in the reaction mixture allowed to expand the scope
of the reaction as SN2’-type processes could be carried out with
functionalized allyl bromide 13 to give the skipped diene 14 as
unique E-isomer in moderate yields.
n-C4H8ZrCp2
RuHCl(CO)(PPh3)3
(5 mol%)
OMe
OMe
(2.0 equiv.)
n
n
THF, 90oC, 16 h
THF,−78 oC to rt
then 60 oC, 2 h
7a (n=2)
7k (n=7)
8a (n=2); E/Z 61:39
8k (n=7); E/Z 61:39
[8]
a) I. Buslov, J. Becouse, S. Mazza, M. Montandon-Clerc, X. Hu, Angew.
Chem. Int. Ed. 2015, 54, 14523; b) I. Buslov, F. Song, X. Hu, Angew.
Chem. Int. Ed. 2016, 55, 12295; c) J. S. Bair, Y, Schram, A. G. Sergeev,
E. Clot, O. Eisenstein, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136,
13098; d) X. Wang, M. Nakajima, E. Serrano, R. Martin, J. Am. Chem.
Soc. 2016, 138, 15531; e) M. Gaydou, T. Moragas, F. J. Hernandez, R.
Martin, J. Am. Chem. Soc. 2017, 139, 12161; g) F. J. Hernández, T.
Moragas, J. Cornella, R. Martin, Nature 2017, 545, 84; h) Y. He, Y. Cai,
S. Zhu, J. Am. Chem. Soc. 2017, 139, 1061; i) F. Chen, K. Chen, Y.
Zhang, Y. He, Y.-M. Wang, S. Zhu, J. Am. Chem. Soc. 2017, 139, 13929.
For recent papers, see a) a) T. Doi, T. Fukuyama, J. Horiguchi, T.
Okamura, I. Ryu, Synlett 2006, 721; b) T. Doi, T. Fukuyama, S.
Minamino, G. Husson, I. Ryu, Chem. Commun. 2006, 1875; c) D. B.
Grotjahn, C. R. Larsen, J. L. Gustafson, R. Nair, A. Sharma, J. Am. Chem.
Soc. 2007, 129, 9592; d) T. Fukuyama, T. Doi, S. Minamino, S. Omura,
I. Ryu, Angew. Chem. Int. Ed. 2007, 46, 5559; e) K. Sorimachi, M. Terada,
J. Am. Chem. Soc., 2008, 130, 14452; f) C. L. Hansen, J. W. Clausen, R.
G. Ohm, E. Ascic, S. T. Le Quement, D. Tanner, T. E. Nielsen, J. Org.
Chem., 2013, 78, 12545; g) J. R. Clark, J. R. Griffiths, S. T. Diver, J. Am.
Chem. Soc., 2013, 135, 3327; h) D. Lazzari, M. C. Cassani, M. A. Brucka,
G. Solinas, M. Prettoa, New J. Chem., 2014, 38, 641; i) Y. Toda, M.
Terada, Synlett 2013, 752; j) E. Ascic, R. G. Ohm, R. Petersen, M. R.
Hansen, C. L. Hansen, D. Madsen, D. Tanner, T. E. Nielsen, Chem. Eur.
J., 2014, 20, 3297.
Br
O
O
CuCl 2LiCl
(20 mol%)
OBn
13
OBn
ZrCp2OMe
n
n
0oC to rt
16 h
THF, 0oC
30 min
12a (n=2)
12k (n=7)
14a (n=2); 47%; E/Z >95:5
14b (n=7); 32%; E/Z >95:5
Scheme 4. [Ru/Zr]-mediated chain walking/E-selective zirconation/
functionalization sequence
[9]
In conclusion, we have developed the [Ru/Ni]-catalyzed
chain walking/cross-coupling sequence as well as the
[Ru/Zr]-mediated sequence allowing the transformation of -
alkenyl ether into functionalized alkenyl species. Importantly,
this transformation illustrates the power and flexibility of
remote functionalization by demonstrating the compatibility
of two independent reactions involving unrelated sites.
Acknowledgements
[10] a) D. Evans, J. A. Osborn, G. Wilkinson, J. Chem. Soc. A. 1968, 3133;
b) R. Franke, D. Selent, A. Börner, Chem. Rev. 2012, 112, 5675; c) M.
Vilches-Herrera, L. Domke, A. Börner, ACS Catal. 2014, 4, 1706; d) A.
Behr, D. Obst, C. Schulte, T. Schosser, Chemical. J. Mol. Catal. 2003,
206, 179; e) A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross, M.
Beller, Science 2002, 297, 1676; f) D. R. Edwards, C. M. Crudden, K.
Yam, Adv. Synth. Catal. 2005, 347, 50; g) K. Yuki, Y. Takahashi, K.
Tanaka, K, Nozaki, J. Am Chem. Soc. 2013, 135, 17393.
This research was supported by a grant from the European
Research Council under the seventh Framework Program of the
European Community (ERC Grant agreement 338912) and by the
Israel Science Foundation (grant No. 330/17).
Keywords: metal walk• cross-coupling • zirconocene • remote
functionalization• Grignard
[11] a) L. Mantilli, D. Gérard, S. Torche, C. Besnard, C. Mazet, Angew. Chem.,
Int. Ed. 2009, 48, 5143; b) L. Mantilli, C. Mazet, Chem. Commun. 2010,
46, 4445; c) A. Quintard, A. Alexakis, C. Mazet, Angew. Chem. Int. Ed.
2011, 50, 2354; d) H. Li, C. Mazet, J. Am Chem. Soc. 2015, 137, 10720.
[12] a) J. V. Obligacion, P. J. Chirik, J. Am. Chem. Soc. 2013, 135, 19107; b)
C. C. H. Atienza, T. Diao, K. J. Weller, S. A. Nye, K. M. Lewis, J. G. P.
Delis, J. L. Boyer, A. K. Roy, P. J. Chirik, J. Am. Chem. Soc. 2014, 136,
12108.
[1]
[2]
R. Breslow, Acc. Chem. Res. 1980, 13, 170; b) H. Schwarz, Acc. Chem.
Res. 1989, 22 (8), 282
a) H. Sommer, F. Julia-Hernandez, R. Martin, I. Marek, ACS Cen Sci.
2018, 10.1021/acscentsci.8b00005; b) A. Vasseur, J. Bruffaerts, I. Marek,
Nat. Chem. 2016, 8, 209.
[3]
[4]
[5]
Z. Nairoukh, M. Cormier, I. Marek, Nat. Rev. Chem. 2017, 1, 35.
N. Chinkov, A. Levin, I. Marek, Angew. Chem., Int. Ed. 2006, 45, 465.
a) N. Chinkov, S. Majumdar, I. Marek, J. Am. Chem. Soc. 2002, 124,
10282; b) N. Chinkov, S. Majumdar, I. Marek, J. Am. Chem. Soc. 2003,
125, 13258.
[13] C. Romano, C. Mazet, J. Am. Chem. Soc. 2018, 140, 4743.
[14] For a recent review, see B.-J. Li, D.-G. Yu, C.-L. Sun, Z.-J. Shi, Chem. A
Eur. J. 2011, 17, 1728.
[15] a) G. Erdogan, D. B. Grotjahn, J. Am. Chem. Soc. 2009, 131, 10354; b)
C. R. Larsen, D. B. Grotjahn, J. Am. Chem. Soc. 2012, 134, 10357; c) G.
E. Dobereiner, G. Erdogan, C. R. Larsen, D. B. Grotjahn, R. R. Schrock,
ACS Catal. 2014, 4, 3069; d) D. B. Grotjahn, C. R. Larsen, G. Erdogan,
Top. Catal. 2014, 57, 1483.
[6]
[7]
a) A. Masarwa, D. Didier, T. Zabrodski, M. Schinkel, L. Ackermann, I.
Marek, Nature 2014, 505, 199; b) A. Vasseur, L. Perrin, O. Eisenstein, I.
Marek, Chem. Sci. 2015, 6, 2270.
a) T. Kochi, T. Hamasaki, Y. Aoyama, J. Kawasaki, F. Kakiuchi. J. Am.
Chem. Soc. 2012, 134, 16544; b) L. Xu, M. J. Hilton, X. Zhang, P.-O.
Norrby, Y.-D. Wu, M. S. Sigman, O. Wiest, J. Am. Chem. Soc. 2014, 136,
1960; c) T.-S. Mei, H. H. Patel, M. S. Sigman, Nature 2014, 508, 340; d)
M. J. Hilton, L.-P. Xu, P.-O. Norrby, Y.-D. Wu, O. Wiest, M. S. Sigman,
J. Org. Chem. 2014, 79, 11841; e) E. Larionov, L. Lin, L. Guénée, C.
Mazet. J. Am. Chem. Soc. 2014, 136, 16882; f) A. Millet, D. Dailler, P.
Larini, O. Baudoin, Angew. Chem. Int. Ed. 2014, 53, 2678; g) H. H. Patel,
M. S. Sigman, J. Am. Chem. Soc. 2015, 137, 3462; h) C. Zhang, C. B.
[16] J. Bruffaerts, A. Vasseur, I. Marek, Adv. Synth. Catal. 2018, 360, DOI:
10.1002/adsc.201701481.
[17] a) H. Wakamatsu, M. Nishida, N. Adachi, M. Mori, J. Org. Chem. 2000,
65, 3966 ; b) S. Omura, T. Fukuyama, J. Horiguchi, Y. Murakami, I. Ryu,
J. Am. Chem. Soc. 2008, 130, 14094.
[18] Z. Lv, Z. Chen, Y. Hu, W. Zheng, H. Wang, W. Mo, G. Yin,
ChemCatChem 2017, 9, 3849.
This article is protected by copyright. All rights reserved.