3 L. G. Sneddon, M. G. L. Mirabelli, A. T. Lynch, P. J. Fazen, K. Su and
J. S. Beck, Pure Appl. Chem., 1991, 63, 407–410.
4 F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley-
Interscience, New York, 1988, 204–207.
5 M. Coˆte´, P. D. Haynes and C. Molteni, Phys. Rev. B, 2001, 63, 125207-
125201–125207-125204.
6 C. A. Brown and A. W. Laubengayer, J. Am. Chem. Soc., 1955, 77,
3699–3700.
7 M. P. Brown, B. G. Mellor and H. B. Silver, GB Patent, 1050434, 1966.
8 K. Niedenzu and J. W. Dawson, J. Am. Chem. Soc., 1959, 81,
3561–3564.
9 S. J. Groszos and S. F. Stafiej, J. Am. Chem. Soc., 1958, 80, 1357–1360.
10 A. Rizzo and B. Frange, J. Organomet. Chem., 1974, 76, 1–8.
11 C. A. Jaska, K. Temple, A. J. Lough and I. Manners, J. Am. Chem.
Soc., 2003, 125, 9424–9434.
¯
12 3: C36H30B3N6, formula weight 5 579.09, rhombohedral, R3c,
˚
3
˚
˚
a 5 14.818(2) A, c 5 24.856(5) A, V 5 4726.5(13) A , Z 5 6, T 5
253 K, F(000) 5 1818, 2hmax 5 50.58u, no. of independent
reflections 5 917, total no. of reflections 5 5591, R1 5 0.040,
wR2 5 0.096, peaks 5 0.161 e A , holes 5 20.196 e A23. 2:
23
˚
˚
C18H18B3N3, formula weight 5 308.78, orthorhombic, Pna21,
˚
3
˚
˚
˚
a 5 7.904(2) A, b 5 19.879(4) A, c 5 10.989(2) A, V 5 1726.6(6) A ,
Z 5 4, T 5 253 K, F(000) 5 648, 2hmax 5 48.9u, no. of independent
reflections 5 1707, total no. of reflections 5 4355, R1 5 0.046,
Fig. 4 EL spectra of the white-light emitting device B at different applied
voltages. Inset: structureof [Zn4OL6](L53-(9-anthracenyl)-7-azaindolate).
wR2 5 0.13, peaks 5 0.525 e A , holes 5 20.279 e A23. The data of 2
were collected before its structure was published. CCDC 232653 and
in CIF or other electronic format.
23
˚
˚
thermal stabilities, such as fac-Co(ppy)3 and (fac-tris(2-phenyl-
pyridinato-N,C29)cobalt(III)), have recently been reported as
HTMs in the literature;21 however, preparation of thin films from
these metal complexes might be complicated by their low
volatilities. In this study, borazine derivatives were found to be
volatile enough to be vacuum deposited. The large band gap (4 eV)
of borazine compounds is also useful for hosting dopants which
emit at different colours, in contrast to the well-documented host
materials, [Ru(bpy)3]2+ (bpy 5 bipyridine) and Alq3, which cannot
host blue emitters.16 The colour purity of the device can be
preserved by using borazine compounds that absorb or emit only
in the UV region (l , 400 nm). Through modification of the
peripheral substituents on the borazine core, this class of
compounds could provide a new entry to multifunctional materials
with tunable physical and chemical properties.
13 The TGA and DSC studies were carried out at a heating rate of
.
10 uC min21
14 B. J. Chen, W. Y. Lai, Z. Q. Gao, C. S. Lee, S. T. Lee and
W. A. Gambling, Appl. Phys. Lett., 1999, 75, 4010–4012.
15 B. Chen, C. S. Lee, S. T. Lee, P. Webb, Y. C. Chan, W. Gambling,
H. Tian and W. Zhu, Jpn. J. Appl. Phys., 2000, 39, 1190–1192.
16 L. S. Hung and C. H. Chen, Mater. Sci. Eng. R., 2002, 39, 143–222.
17 An Ag/AgCl reference electrode was used and the measurements were
referenced to the Cp2Fe+/0 couple. The scan rate was 100 mV s21
.
18 In dichloromethane solution, the absorption lmax of Alq3 are at 260 and
390 nm, while those of NPB are at 230, 283, 324 and 351 nm.
19 E. A. Rojo, G. J. Videla, M. A. Molinari, O. A. Lires and L. H. Casas,
Int. J. Appl. Radiat. Isot.., 1964, 15, 611–616.
20 D. E. Loy, B. E. Koene and M. E. Thompson, Adv. Funct. Mater., 2002,
12, 245–249.
21 X. Ren, B. D. Alleyne, P. I. Djurovich, C. Adachi, I. Tsyba, R. Bau and
M. E. Thompson, Inorg. Chem., 2004, 43, 1697–1707.
22 [Zn4OL6] (L 5 3-(9-anthracenyl)-7-azaindolate): zinc acetate (0.25 g,
1.14 mmol) in methanol (10 mL) was added to a hot solution of 3-(9-
anthracenyl)-7-azaindole (0.20 g, 0.68 mmol) in methanol (20 mL) in
three portions within 30 min. The reaction mixture was stirred at 60 uC
for 3 h. After cooling, the solid was filtered and washed with hot
methanol to afford a pale yellow solid. Yield: 0.19 g (83%). Td: 417 uC.
1H NMR (300 MHz, CDCl3): d 8.68–8.33 (m, 3H), 8.17–8.07 (m, 2H),
7.73–7.18 (m, 7H), 7.01–6.81 (m, 1H). FABMS m/e: 2036 (M+). Anal.
calcd. for C126H84N12OZn4: C, 74.25; H, 4.16; N, 8.25. Found: C, 74.35;
H, 4.05; N, 8.13.
We gratefully acknowledge financial support by University
Development Fund (Nanotechnology Research Institute,
00600009) of The University of Hong Kong and Innovation and
Technology Commission of The Government of Hong Kong
Special Administrative Region (HKSAR), China (Project No. ITS/
53/01). We would also like to thank Sunic System Ltd. for support
on fabrication techniques.
23 C. F. Lee, K. F. Chin, S. M. Peng and C. M. Che, J. Chem. Soc., Dalton
Trans., 1993, 467–470.
Notes and references
24 Y. Ma, H. Y. Chao, Y. Wu, S. T. Lee, W. Y. Yu and C. M. Che, Chem.
Commun., 1998, 22, 2491–2492.
25 M. Mazzeo, V. Vitale, F. Della Sala, M. Anni, G. Barbarella,
L. Favaretto, G. Sotgiu, R. Cingolani and G. Gigli, Adv. Mater.,
2005, 17, 34–39.
other electronic format.
1 R. J. P. Emsley and J. H. Sharp, in Boron nitride and other covalent
ceramic fibers, ed. F. R. Jones, Harlow, 1994.
26 J. Y. Li, D. Liu, C. W. Ma, O. Lengyel, C. S. Lee, C. H. Tung and
S. T. Lee, Adv. Mater., 2004, 16, 1538–1541.
2 P. Miele, B. Toury, D. Cornu, S. Bernard, M.-P. Berthet, L. Rousseau
and G. Beauhaire, US Patent Application, 2003180206, 2003.
27 S. Li, G. Zhong, W. Zhu, F. Li, J. Pan, W. Huang and H. Tian, Chem.
Lett., 2005, 34, 688–689.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 3547–3549 | 3549