10.1002/ejoc.201901851
European Journal of Organic Chemistry
COMMUNICATION
Keywords: Nickel-catalyzed • low catalytic loadings • weak base
• MALT1 inhibitor • MI-2
[1] a) F. Theil, Angew. Chem. Int. Ed. 1999, 38, 2345-2347; b) R. Frlan,
D. Kikelj, Synthesis 2006, 2271-2285; c) O. Bistri, A. Correa, C. Bolm,
Angew. Chem. Int. Ed. 2008, 47, 586-588; d) T. Schareina, A. Zapf,
A. Cotte, N. Muller, M. Beller, Org. Process Res. Dev. 2008, 12, 537-
539; e) D. Maiti, S. L. Buchwald, J. Org. Chem. 2010, 75, 1791-1794;
f) F. Bedos-Belval, A. Rouch, C. Vanucci-Bacque, M. Baltas, Med.
Chem. Commun., 2012, 3, 1356-1372; g) A. Y. Cheng, J. C. Hsieh,
Tetrahedron Lett. 2012, 53, 71-75; h) S. Bhunia, G. G. Pawar, S. V.
Kumar, Y. Jiang, D. Ma, Angew. Chem. Int. Ed. 2017, 56, 16136-
16179.
[2] a) N. Xia, M. Taillefer, Chem. Eur. J. 2008, 14, 6037-6039; b) F.
Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954-6971; c)
T. Hu, T. Schulz, C. Torborg, X. Chen, J. Wang, M. Beller, J. Huang,
Chem. Commun. 2009, 7330-7332; d) H. J. Kim, M. Kim, S. Chang,
Org. Lett. 2011, 13, 2368-2371; e) V. Magne, T. Garnier, M. Danel, P.
Pale, S. Chassaing, Org. Lett. 2015, 17, 4494-4497; f) Y. Zhang, G.
Ni, C. J. Li, S. Xu, Z. G. Zhang, X. M. Xie, Tetrahedron 2015, 71,
4927-4932; g) D. A. W. S. Laitonjam, Asian J. Org. Chem. 2017, 6,
1492-1497.
[3] a) J. P. Corbet, G. Mignani, Chem. Rev. 2006, 106, 2651-2710; b) H.
Rao, Y. Jin, H. Fu, Y. Jiang, Y. Zhao, Chem. Eur. J. 2006, 12, 3636-
3646; c) E. Negishi, Bull. Chem. Soc. Jpn. 2007, 80, 233-257; d) F.
Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2008, 47, 3096-3099; e)
D. G. Yu, B. J. Li, Z. J. Shi, Accounts Chem Res 2010, 43, 1486-
1495; f) J. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff, D. W.
MacMillan, Nature 2015, 524, 330-334; g) M. Tobisu, N. Chatani,
Accounts Chem Res 2015, 48, 1717-1726; h) J. Magano, S.
Monfette, ACS Catal., 2015, 5, 3120-3123; i) W. Schutyser, T.
Renders, S. Van den Bosch, S. F. Koelewijn, G. T. Beckham, B. F.
Sels, Chem. Soc. Rev., 2018, 47, 852-908.
[4] a) S. Harkal, K. Kumar, D. Michalik, A. Zapf, R. Jackstell, F. Rataboul,
T. Riermeier, A. Monsees, M. Beller, Tetrahedron Lett. 2005, 46,
3237-3240; b) X. Lv, W. Bao, J. Org. Chem. 2007, 72, 3863-3867; c)
D. Ma, Q. Cai, Accounts Chem Res 2008, 41, 1450-1460; d) J. Niu,
H. Zhou, Z. Li, J. Xu, S. Hu, J. Org. Chem. 2008, 73, 7814-7817; e) A.
B. Naidu, G. Sekar, Tetrahedron Lett. 2008, 49, 3147-3151; f) S.
Jammi, S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, P.
Saha, T. Punniyamurthy, J. Org. Chem. 2009, 74, 1971-1976; g) J.
Niu, P. Guo, J. Kang, Z. Li, J. Xu, S. Hu, J. Org. Chem. 2009, 74,
5075-5078; h) M. S. Kabir, M. Lorenz, O. A. Namjoshi, J. M. Cook,
Org. Lett. 2010, 12, 464-467; i) J. X. Qiao, P. Y. S. Lam, Synthesis
2011, 829-856; j) P. E. Maligres, J. Li, S. W. Krska, J. D. Schreier, I.
T. Raheem, Angew. Chem. Int. Ed. 2012, 51, 9071-9074; k) H. Lin, D.
Sun, Org. Prep. Proced. Int. 2013, 45, 341-394; l) K. K. Krishnan, S.
M. Ujwaldev, K. S. Sindhu, G. Anilkumar, Tetrahedron 2016, 72,
7393-7407.
[5] a) A. Aranyos, D. W. Old, A. Kiyomori, J. P. Wolfe, J. P. Sadighi, S. L.
Buchwald, J. Am. Chem. Soc. 1999, 121, 4369-4378; b) R. B.
Bedford, C. S. J. Cazin, D. Holder, Coord. Chem. Rev. 2004, 248,
2283-2321; c) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem.
Int. Ed. 2005, 44, 4442-4489; d) C. H. Burgos, T. E. Barder, X.
Huang, S. L. Buchwald, Angew. Chem. Int. Ed. 2006, 45, 4321-4326;
e) S. G. Newman, M. Lautens, J. Am. Chem. Soc. 2010, 132, 11416-
11417; f) X. Wu, B. P. Fors, S. L. Buchwald, Angew. Chem. Int. Ed.
2011, 50, 9943-9947; g) S. Enthaler, A. Company, Chem. Soc. Rev.,
2011, 40, 4912-4924; h) Bandna, N. R. Guha, A. K. Shil, D. Sharma,
P. Das, Tetrahedron Lett. 2012, 53, 5318-5322.
Figure 4. Proposed mechanism for C-O cross-coupling reaction.
Conclusions
In conclusion, a low dosage NiCl2(PPh3)2 and weak base
KHCO3 catalytic system has been developed for the aromatic C-
O coupling reaction. This reaction proceeds under mild reaction
conditions and is applicable to a wide variety of substrates with
strong electron-withdrawing nitro group. This new protocol can
complement existing reaction methods.
Experimental Section
General Procedure for the formation of diaryl ethers. To a vial
equipped with a magnetic stirrer bar were added heterocyclic
alcohols (0.3 mmol), aryl bromides (0.36 mmol), DMSO (1 mL),
KHCO3 (0.45 mmol) and NiCl2(PPh3)2 (1 mol%). The reaction
o
mixture was stirred at 90 C under argon atmosphere. After the
reaction was completed (monitored by TLC analysis), the
mixture was poured into 0.5 N HCl solution and the aqueous
phase was extracted with EtOAc. The organic layer was washed
sequentially with H2O and brine, then dried over Na2SO4. The
solvent was removed under vacuo and the crude product was
purified by chromatography on silica gel to give the desired
product.
CCDC 1539289 (for 4) contains the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data
Centre.
[6] a) J. S. Sawyer, Tetrahedron 2000, 56, 5045-5065; b) I. P.
Beletskaya, A. V. Cheprakov, Coord. Chem. Rev. 2004, 248, 2337-
2364.
Acknowledgements
[7] a) Q. Cai, B. Zou, D. Ma, Angew. Chem. Int. Ed. 2006, 45, 1276-
1279; b) Y. H. Liu, G. Li, L. M. Yang, Tetrahedron Lett. 2009, 50,
343-346; c) Q. Zhang, D. Wang, X. Wang, K. Ding, J. Org. Chem.
2009, 74, 7187-7190; d) Y. Zhai, X. Chen, W. Zhou, M. Fan, Y. Lai,
D. Ma, J. Org. Chem. 2017, 82, 4964-4969.
This research was supported by the Natural Science Foundation
of Fujian Province (2019J01202) and the Joint research project
of Health and Education of Fujian Province (No. WKJ2016-2-06).
3
This article is protected by copyright. All rights reserved.