Chemistry Letters Vol.33, No.6 (2004)
665
corresponding ꢀ-methoxylated ꢁ-bromoalanyldipeptide deriva-
tive 17. Thirdly, deprotection of the Boc group of 17 with
TFA and then hydrolysis proceeded smoothly to give 3, as
shown in Scheme 2. However, because of its lability, without pu-
rification the formed 3 was used in the next thiazolation with 2.
for the various bistratamide-type metabolites has been efficiently
developed.
This work was supported in part by Grant-in-Aid for
Scientific Research No. 14550829 from the Ministry of
Education, Culture, Sports, Science and Technology and by
‘‘High-Tech Research Project’’ from the Ministry of Education,
Culture, Sports, Science and Technology, Japan.
O
X
O
OH
OMe
O
iii)
O
i)
H
H
N
N
OMe
N
Boc
N
N
Boc
N
87%
98%
H
H
O
O
O
O
O
References and Notes
12 : X = H
11
14
ii)
13 : X = Br70%
1
2
3
D. J. Faulkner, J. Nat. Prod. Rep., 19, 1 (2002).
L. J. Perez and D. J. Faulkner, J. Nat. Prod., 66, 247 (2003).
For examples: a) D. A. Evans, J. R. Gege, and J. L.
Leightow, J. Am. Chem. Soc., 114, 9434 (1992). b) S. K.
Chattopadhyay, J. Kempson, A. McNeil, G. Pattenden, M.
Reader, D. E. Rippon, and D. Waite, J. Chem. Soc., Perkin
Trans. 1, 2000, 2415. c) P. Wipf and C. P. Miller,
Tetrahedron Lett., 33, 907 (1992). d) Y. Hamada, M.
Shibata, T. Sugiura, S. Kata, and T. Shioiri, J. Org. Chem.,
52, 1252 (1987).
O
HO
O
O
iv)
i)
H
N
H
N
OMe
OMe
N
Boc
N
BocHN
N
97%
98%
O
O
O
O
15
17
Br
OMe
O
O
vi)
v)
H
N
H
N
OMe
OMe
BocHN
N
BocHN
N
97%
80%
O
O
O
16
3
Br
O
O
4
5
6
C. D. Smith and Z. Xia, J. Org. Chem., 66, 3459 (2001).
A. Bertram and G. Pattenden, Heterocycles, 58, 521 (2002).
a) S. L. You and J. W. Kelly, J. Org. Chem., 68, 9506 (2003).
b) S. L. You and J. W. Kelly, Chem.—Eur. J., 10, 71 (2004).
S. V. Downing, E. Aguilar, and A. I. Meyers, J. Org. Chem.,
64, 826 (1999).
In this paper, the symbols ꢀ1, ꢀ2, and ꢀ3 indicate the
position number of the ꢀ-dehydroamino acid residue from
the N-terminus in sequence.
H
N
OMe
N
O
O
7
8
Scheme 2. Reagents and conditions: i) MsCl, Et3N, CHCl3,
0 ꢁC, 1 h, then DBU, rt, 30 min, ii) NBS, CHCl3, rt, 1 h, Et3N,
rt, 30 min, iii) Cs2CO3, dioxane, 60 ꢁC, 6 h, iv) TFA:CHCl3
(4:96 v/v), rt, 5 h, v) NBS, MeOH, rt, 30 min, vi) TFA, rt,
30 min, then H2O, rt, 10 min.
9
a) T. Kayano, Y. Yonezawa, and C. Shin, Chem. Lett., 33, 72
(2004). b) H. Saito, T. Yamada, K. Okumura, Y. Yonezawa,
and C. Shin, Chem. Lett., 2002, 1098.
Finally, thiazolation between the thiocarboxamide group of
2 and the bromoacyl group of 3 by successive treatments with
KHCO3 in dimethoxyethane (DME), with trifluoroacetic anhy-
dride (TFAA) and pyridine, and then with 28% aq. NH3 gave
a linear triheterocyclic peptide 18.11 Hydrolysis of the ester with
1 M LiOH and deprotection of the Cbz group of the hydrolysate
19 with 10% Pd-C/H2, followed finally by macrocyclization of
the obtained N,O-deprotected triheterocyclic peptide 20 with
BOP and (i-Pr)2NEt in DMF under high-dilution conditions
(1 mmol/L) at room temperature for 12 h gave the expected
112 in 51% yield from 20, as shown in Scheme 3.
10 N. Endoh, K. Tsuboi, R. Kim, Y. Yonezawa, and C. Shin,
Heterocycles, 60, 1567 (2003).
26
11 18: Colorless solid. mp 71.0–71.5 ꢁC. ½ꢀꢂD þ4:2ꢁ (c 0.93,
CHCl3). 1H NMR (CDCl3, 600 MHz) ꢂ ¼ 0:91 (d, 3H,
J ¼ 6:6 Hz), 0.93 (d, 3H, J ¼ 6:6 Hz), 0.95 (d, 3H, J ¼
7:2 Hz), 0.97 (d, 3H, J ¼ 7:2 Hz), 0.99 (d, 3H, J ¼ 7:2 Hz),
1.12 (d, 3H, J ¼ 7:2 Hz), 2.23–2.25, 2.35–2.37 and 2.56–
2.62 (each m, 1H ꢄ 3), 2.61 (s, 3H), 3.91 (s, 3H), 4.84–
4.88 (m, 1H), 5.08–5.14 (m, 2H), 5.17–5.20, 5.32–5.38,
and 5.49–5.52 (each m, 1H ꢄ 3), 7.33–7.36 (m, 5H), 7.45
and 7.85 (each br d, 1H ꢄ 2, J ¼ 9:6 Hz), 8.03 (s, 1H),
8.17 (s, 1H). Found: C, 58.83; H, 6.23; N, 12.48%. Calcd
for C34H42N6O8S: C, 58.77; H, 6.09; N, 12.19%.
O
i)
S
O
iii)
H
N
H
N
XHN
2 + 3
1
OY
N
N
N
83%
51%
26
12 1: Colorless solid. mp 85.0–85.5 ꢁC. ½ꢀꢂD ꢃ82:3ꢁ (c 1.00,
O
O
O
MeOH). IR (KBr) 3396, 2964, 1685, 1676, 1597, 1533,
1508 cmꢃ1
18 : X=Cbz, Y=Me
19 : X=Cbz, Y=H
20 : X=Y=H
iia)
quant
.
1H NMR (DMSO-d6, 600 MHz) ꢂ ¼ 0:79 (d,
quant iib)
3H, J ¼ 6:6 Hz), 0.80 (d, 3H, J ¼ 6:6 Hz), 0.83 (d, 3H,
J ¼ 7:2 Hz), 0.84 (d, 3H, J ¼ 7:2 Hz), 0.86 (d, 3H, J ¼
7:2 Hz), 0.87 (d, 3H, J ¼ 7:2 Hz), 2.04–2.09 (m, 1H), 2.11–
2.14 (m, 1H), 2.17–2.21 (m, 1H), 2.46 (s, 3H), 4.91 (dd, 1H,
J ¼ 7:2, 4.2 Hz), 4.97 (dd, 1H, J ¼ 9:0, 6.0 Hz), 5.28 (dd,
1H, J ¼ 9:0, 6.0 Hz), 8.20 (br d, 1H, J ¼ 7:2 Hz), 8.22 (br
d, 1H, J ¼ 9:0 Hz), 8.23 (s, 1H), 8.36 (br d, 1H, J ¼
9:0 Hz), 8.68 (s, 1H). 13C NMR (DMSO-d6, 150 MHz) ꢂ ¼
11:1, 18.0, 18.1, 18.1, 18.2, 18.3, 18.6, 32.6, 32.9, 34.6,
52.1, 52.7, 54.8, 125.2, 128.0, 134.5, 143.0, 147.9, 152.9,
158.4, 159.3, 160.3, 160.6, 163.2, 168.3. MALDI-TOFMS
Found: m=z 528.10 (M þ Hþ). Calcd for C25H32N6O5S:
528.63 (M þ Hþ).
Scheme 3. Reagents and conditions: i) KHCO3, DME, 0 ꢁC, 30
min, 50 ꢁC, overnight, b) TFAA, pyridine, 0 ꢁC, 1 h, c) 28% aq.
NH3, 0 ꢁC, ii) a) 1 M LiOH, H2O-dioxane (1:1 v/v), rt, 30 min,
b) 10% Pd-C, H2, rt, 3 h, iii) BOP, (i-Pr)2NEt, DMF, 12 h.
The structures of all new products thus obtained were con-
firmed by the 1H and 13C NMR spectral data and the satisfactory
results of the elemental analyses. In particular, the chemical and
26
physical constants of the synthetic 1 (½ꢀꢂD ꢃ82:3ꢁ (c 1.00,
MeOH)) were fully identical with those of the natural 1 (½ꢀꢂD
ꢃ73:8ꢁ (c 1.0, MeOH)).
In conclusion, a convenient and general synthetic method
Published on the web (Advance View) June 5, 2004; DOI 10.1246/cl.2004.664