C O M M U N I C A T I O N S
Table 1. Biosynthesis of AminoDAHP from Kanosamine 6-Phosphate and Kanosamine from UDP-Glucose
entry
reaction conditions
productsc (yield,d %)
1
kanosamine 6-phosphate, R5P, PEP; yeast phosphoglucose isomerase (60 units), E. coli TktA
transketolase (9 unitsa), E. coli AroFFBR DAHP synthase (660 unitsb), pH 7.3
kanosamine 6-phosphate, R5P, PEP; yeast phosphoglucose isomerase (60 units), E. coli TktA
transketolase (9 unitsa), A. mediterranei RifH aminoDAHP synthase (64 unitsb), pH 7.3
kanosamine 6-phosphate, R5P, PEP; A. mediterranei cell-free extract
(DAHP synthase activity of 0.2 unitb), pH 7.3
DAHP (39)
2
3
4
5
aminoDAHP (2); DAHP (30)
aminoDAHP (6); DAHP (20);
AHBA (2); Tyr (3); Phe (2)
DAHP (21)
glucose 6-phosphate, R5P, PEP, glutamine, (NH4)2SO4; A. mediterranei cell-free extract
(DAHP synthase activity of 0.2 unitb), pH 7.3
UDP-6,6-[2H2]-glucose, NAD, glutamine; A. mediterranei cell-free extract, pH 6.8
6,6-[2H2]-kanosamine (5)
a Transketolase was assayed according to ref 6a. b AminoDAHP synthase was assayed as DAHP synthase activity according to ref 6a. c See the legend
to Scheme 1 for abbreviations. d Yields are 1H NMR yields of aminoDAHP, DAHP, and AHBA purified to homogeneity and of L-tyrosine and L-phenylalanine
purified to a binary mixture. Response factors and quantification of product concentrations were based on integration relative to 3-(trimethylsilyl)propionate-
2,2,3,3-d4.
Incubation of 3-amino-3-deoxy-D-fructose 6-phosphate with cell-
free lysate of A. mediterranei (ATCC 21789) has previously been
reported to give higher yields of aminoDAHP than incubations
employing the assembled bioconversion system.4 Accordingly,
reaction of kanosamine 6-phosphate with D-ribose 5-phosphate and
phosphoenolpyruvate in A. mediterranei cell-free lysate led to higher
yields of aminoDAHP and formation of 3-amino-5-hydroxybenzoic
acid (entry 3, Table 1). As a control experiment, D-glucose
6-phosphate, D-ribose 5-phosphate, and phosphoenolpyruvate were
incubated in A. mediterranei cell-free lysate with glutamine and
(NH4)2SO4 as possible sources of nitrogen (entry 4, Table 1). No
aminoDAHP formation was observed.
Streptomyces kanamyceticus (kanamycin),7 A. mediterranei (rifa-
mycin),3c Streptomyces laVendulae (mitomycin),8 and Actino-
synnema pretiosum (ansamitocin).9
Acknowledgment. Professor Heinz G. Floss provided rifH.
Research was supported by a contract from F. Hoffmann-La Roche
Ltd. and a grant from the National Institutes of Health.
Supporting Information Available: Synthesis of kanosamine
6-phosphate and its conversion to aminoDAHP; synthesis of UDP-
6,6-[2H2]-glucose and its conversion to 6,6-[2H2]-kanosamine (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
Reaction of kanosamine with ATP, D-ribose 5-phosphate, and
phosphoenolpyruvate in A. mediterranei cell-free lysate did not
produce quantifiable levels of either aminoDAHP or DAHP. As a
consequence, attention turned to biosynthesis of kanosamine in A.
mediterranei. Kanosamine biosynthesis was first observed and
studied in Bacillus pumilus (formerly Bacillus aminoglucosidicus)
in the 1960s.5a-c Incubation of UDP-[U-14C]-glucose in B. pumilus
cell lysate with NAD and glutamine led to the formation of [U-14C]-
kanosamine.5c Likewise, incubation of UDP-6,6-[2H2]-glucose with
NAD and glutamine in A. mediterranei cell-free lysate led to the
formation of 6,6-[2H2]-kanosamine (entry 5, Table 1). Based on
analysis by electrospray mass spectrometry, UDP-6,6-[2H2]-glucose
having an M + 2 ion with relative intensity 98.08% yielded
kanosamine having an M + 2 ion with 97.83% relative intensity.
Incubation of UDP-glucose with NAD, glutamine, ATP, D-ribose
5-phosphate, and phosphosphoenolpyruvate in A. mediterranei cell-
free lysate did not produce quantifiable concentrations of amino-
DAHP. Low levels of aminoglucokinase (b, Scheme 1) in lysed A.
mediterranei cells may explain the formation of kanosamine from
UDP-glucose as well as the lack of quantifiable aminoDAHP
formation from UDP-glucose and kanosamine.
Kanosamine biosynthesis has been directly implicated as the
source of the aminoshikimate pathway’s nitrogen atom. This follows
from the observed bioconversions of kanosamine 6-phosphate into
aminoDAHP and 3-amino-5-hydroxybenzoic acid (entries 2 and
3, Table 1), along with the observed bioconversion of UDP-glucose
into kanosamine (entry 5, Table 1). As a consequence, elaboration
of the source of the aminoshikimate pathway’s nitrogen atom must
now include elaboration of the biosynthesis of kanosamine. In turn,
biosynthesis of kanosmine emerges as a pathway possibly shared
by microbes (biosyntheses) as diverse as Bacillus spp. (kanosamine),5
References
(1) Floss, H. G. Nat. Prod. Rep. 1997, 14, 433.
(2) (a) Kim, C.-G.; Kirschning, A.; Bergon, P.; Ahn, Y.; Wang, J. J.; Shibuya,
M.; Floss, H. G. J. Am. Chem. Soc. 1992, 114, 4941. (b) Kirschning, A.;
Bergon, P. Wang, J.-J.; Breazeale, S.; Floss, H. G. Carbohydr. Res. 1994,
256, 245. (c) Kim, C.-G.; Kirschning, A.; Bergon, P.; Zhou, P.; Su, E.;
Sauerbrei, B.; Ning, S.; Ahn, Y.; Breuer, M.; Leistner, E.; Floss, H. G. J.
Am. Chem. Soc. 1996, 118, 7486.
(3) (a) Kim, C.-G.; Yu, T.-W.; Fryhle, C. B.; Handa, S.; Floss, H. G. J. Biol.
Chem. 1998, 273, 6030. (b) Eads, J. C.; Beeby, M.; Scapin, G.; Yu, T.
W.; Floss, H. G. Biochemistry 1999, 38, 9840. (c) August, P. R.; Tang,
L.; Yoon, Y. J.; Ning, S.; Mu¨ller, R.; Yu, T.-W.; Taylor, M.; Hoffmann,
D.; Kim, C.-G.; Zhang, X.; Hutchinson, C. R.; Floss, H. G. Chem. Biol.
1998, 5, 69. (d) Yu, T.-W.; Mu¨ller, R.; Mu¨ller, M.; Zhang, X.; Draeger,
G.; Kim, C.-G.; Leistner, E.; Floss, H. G. J. Biol. Chem. 2001, 276, 12546.
(4) (4)Guo, J.; Frost, J. W. J. Am. Chem. Soc. 2002, 124, 528.
(5) (a) Umezawa, S.; Umino, K.; Shibahara, S.; Hamada, M.; Omoto, S. J.
Antibiot. 1967, 20, 355. (b) Umezawa, S.; Umino, K.; Shibahara, S.;
Omoto, S. Bull. Chem. Soc. Jpn. 1967, 40, 2419. (c) Umezawa, S.;
Shibahara, S.; Omoto, S.; Takeuchi. T.; Umezawa, H. J. Antibiot. 1968,
21, 485. (d) Dolak, L. A.; Castle, T. M.; Dietz, A.; Laborde, A. L. J.
Antibiot. 1980, 33, 900. (e) Tsuno, T.; Ikeda, C.; Numata, K.; Tomita,
K.; Konishi, M.; Kawaguchi, H. J. Antibiot. 1986, 39, 1001. (f) Fusetani,
N.; Ejima, D.; Matsunaga, S.; Hashimoto, K.; Itagaki, K.; Akagi, Y.; Taga,
N.; Suzuki, K. Experientia 1987, 43, 464. (g) Milner, J. L.; Silo-Suh, L.;
Lee, J. C.; He, H.; Clardy, J.; Handelsman, J. Appl. EnViron. Microbiol.
1996, 62, 3061.
(6) (a) Draths, K. M.; Pompliano, D. L.; Conley, D. L.; Frost, J. W.; Berry,
A.; Disbrow, G. L.; Staversky, R. J.; Lievense, J. C. J. Am. Chem. Soc.
1992, 114, 3956. (b) Li, K.; Mikola, M. R.; Draths, K. M.; Worden, R.
M.; Frost, J. W. Biotechnol. Bioeng. 1999, 64, 61. (c) Weaver, L. M.;
Herrmann, K. M. J. Bacteriol. 1990, 172, 6581.
(7) Umezawa, H.; Ueda, M.; Maeda, K.; Yagishita, K.; Kondo, S.; Okami,
Y.; Utahara, R.; Osato, Y.; Nitta, K.; Takeuchi, T. J. Antibiot. 1957, 10,
181.
(8) Mao, Y.; Varoglu, M.; Sherman, D. H. J. Bacteriol. 1999, 181, 2199.
(9) (a) Higashide, E.; Asai, M.; Ootsu, K.; Tanida, S.; Kozai, Y.; Hasegawa,
T.; Kishi, T.; Sugino, Y.; Yoneda, M. Nature 1977, 270, 721. (b) Carrroll,
B. J.; Moss, S. J.; Bai, L.; Kato, Y.; Toelzer, S.; Yu, T.-W.; Floss, H. G.
J. Am. Chem. Soc. 2002, 124, 4176. (c) Yu, T.-W.; Bai, L.; Clade, D.;
Hoffmann, D.; Tolzer, S.; Trinh, K. Q.; Xu, J.; Moss, S. J.; Leistner, E.;
Floss, H. G. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 7968.
JA026628M
9
J. AM. CHEM. SOC. VOL. 124, NO. 36, 2002 10643