1 J. Hassan, M. Se´vignon, C. Gozzi, E. Sculz and M. Lemaire, Chem.
Rev., 2002, 102, 1359.
2 (a) W. Su, S. Urgaonkar, P. M. McLaughlin and J. G. Verkade, J. Am.
Chem. Soc., 2004, 126, 16433; (b) G. Altenhoff, R. Goddard,
C. W. Lehmann and F. Glorius, J. Am. Chem. Soc., 2004, 126,
15195; (c) J. E. Milne and S. L. Buchwald, J. Am. Chem. Soc., 2004, 126,
13028; (d) A. N. Cammidge and K. V. L. Cre´py, Tetrahedron, 2004, 60,
4377; (e) C. Dai and G. C. Fu, J. Am. Chem. Soc., 2001, 123, 2719.
3 (a) P. E. Fanta, Synthesis, 1974, 9. For a recent application see: (b)
A. I. Meyers, T. D. Nelson, H. Moorlag, D. J. Rawson and A. Meier,
Tetrahedron, 2004, 60, 4459.
4 (a) R. Hong, R. Hoen, J. Zhang and G. Lin, Synlett, 2001, 1527; (b)
M. F. Semmelhack, P. Helquist, L. D. Jones, L. Keller, L. Mendelson,
L. S. Ryono, J. G. Smith and R. D. Stauffer, J. Am. Chem. Soc., 1981, 103,
6461.
Scheme 3 Proposed catalytic cycle for oxidation of zinc diarylcuprates.
5 (a) K. Khanbabaee and T. van Ree, Synthesis, 2001, 1585; (b)
S. Quideau and K. S. Feldman, Chem. Rev., 1996, 96, 475; (c)
T. D. Nelson and A. I. Meyers, J. Org. Chem., 1994, 59, 2577.
6 (a) H. Heany and S. Christie, in Science of Synthesis, ed. I. A. O’Neil,
Thieme, Stuttgart, 2004, vol. 3, p. 305; (b) Modern Organocopper
Chemistry, ed. N. Krause, Wiley-VCH, Weinheim, 2002; (c)
Organocopper Reagents—A Practical Approach, ed. R. J. K. Taylor,
Series ed. L. M. Harwood and C. J. Moody, Oxford University Press,
Oxford, 1994.
7 (a) G. M. Whitesides, J. SanFilippo, Jr., C. P. Casey and E. P. Panek,
J. Am. Chem. Soc., 1967, 89, 5302; (b) For low temperature cross-
coupling, see B. H. Lipshutz, K. Siegmann, E. Garcia and F. Kayser,
J. Am. Chem. Soc., 1993, 115, 9276; (c) For intramolecular coupling, see:
B. H. Lipshutz, F. Kayser and Z.-P. Liu, Angew. Chem., Int. Ed. Engl.,
1994, 33, 1842; (d) For cross-coupling of lithium dialkylcuprates, see:
R. K. Dieter, S. Li and H. Chen, J. Org. Chem., 2004, 69, 2867. For
selected applications see: (e) R. S. Coleman and S. R. Gurrala, Org.
Lett., 2005, 7, 1849; (f) D. R. Spring, S. Krishnan, H. E. Blackwell and
S. L. Schreiber, J. Am. Chem. Soc., 2002, 124, 1354; (g) R. W. Baker,
R. V. Kyasnoor, M. V. Sargent, B. W. Skelton and A. H. White, Aust.
J. Chem., 2000, 53, 487; (h) M. B. Andrus, D. Asgari and J. A. Sclafani,
J. Org. Chem., 1997, 62, 9365.
8 For a recent review see: D. S. Surry and D. R. Spring, Chem. Soc. Rev.,
2006, 35, 218.
9 D. S. Surry, X. Su, D. J. Fox, V. Franckevicius, S. J. F. Macdonald and
D. R. Spring, Angew. Chem., Int. Ed., 2005, 44, 1870.
10 I. Hiriyakkanavar, O. Baron, A. J. Wagner and P. Knochel, Chem.
Commun., 2006, 583 and references therein.
11 For the oxidation of zinc amidocuprates in the formation of carbon–
nitrogen bonds, see: F. Cane`, D. Brancaleoni, P. Dembech, A. Ricci and
G. Seconi, Synthesis, 1997, 545.
features a rare 5,6,7,8-tetrahydrobenzo[c,e]azocine skeleton con-
sisting of a biaryl encompassed within an eight-membered
N-heterocyclic ring and constitutes a challenging synthetic target.
It has been synthesized previously by several groups,20 but not by
the most direct strategy of medium ring and biaryl formation in
one step. Treatment of the acyclic aryl bromide with Rieke zinc
under the standard conditions, followed by transmetallation to the
intramolecular cuprate and oxidation provided an excellent yield
of buflavine, the spectroscopic data of which matched that
reported for the natural material.19
There have been several discussions on the mechanism of the
stoichiometric organocuprate oxidation reaction.7a,d In order to
account for the use of substoichiometric amounts of copper(I) and
oxidant the catalytic cycle in Scheme 3 is proposed. Consistent
with this mechanism is the finding that aryl zinc halides are not
oxidised at an appreciable rate under the reaction conditions. Also,
the inorganic residue that remained after catalytic organocuprate
oxidation could be used successfully in subsequent reactions,
suggesting that the copper salt is acting in a truly catalytic manner.
In summary, we have shown that zinc organocuprates may be
oxidized to give a wide range of carbon–carbon bonds in high yield
in the presence of electrophilic functional groups such as esters,
nitriles and ketones. We have disclosed for the first time the use of
copper and organic oxidant loadings well below the level of one
equivalent for each carbon–carbon bond made and have presented
a tentative catalytic cycle to explain these results. The new
methodology was applied in the total synthesis of the
Amaryllidaceae alkaloid buflavine, by concomitant biaryl bond
(from aryl bromides) and medium ring formation. Taken together,
these findings represent a significant advance and should herald
greater use of organocuprate oxidation in synthesis. Ongoing
studies in our laboratories are concerned with the expansion of the
substrate scope beyond organic halides and with further applica-
tion in the synthesis of natural products.
12 P. Knochel and R. D. Singer, Chem. Rev., 1993, 93, 2117.
13 P. Wipf, Synthesis, 1993, 537.
14 (a) L. Zhu, R. M. Wehmeyer and R. D. Rieke, J. Org. Chem., 1991, 56,
1445; (b) H. Fillon, C. Gosmini and J. Pe´richon, J. Am. Chem. Soc.,
2003, 125, 3867; (c) T. N. Majid and P. Knochel, Tetrahedron Lett.,
1990, 31, 4413; (d) R. Ikegami, A. Koresawa, T. Shibata and K. Takagi,
J. Org. Chem., 2003, 68, 2195.
15 Other solvents can be used, such as THF, MeCN; however, yields were
highest using DMA.
16 Further decreases in the amount of copper reduced the yield marginally.
17 Electron-rich systems, for example 4-bromoanisole, required 0.25 equiva-
lents of oxidant per aryl zinc; whereas electron-poor systems, for
example ethyl 4-bromobenzoate, required 0.5 equivalents of oxidant per
aryl zinc. This disparity may reflect the differences in the energy of the
HOMO of the respective zinc organocuprates.
18 M. Takahashi, T. Ogiku, T. Okamura, T. Da-te, H. Ohmizu, K. Kondo
and T. Iwasaki, J. Chem. Soc., Perkin Trans. 1, 1993, 1473.
19 F. Viladomat, J. Bastida, C. Codina, W. E. Campbell and S. Mathee,
Phytochemistry, 1995, 40, 307.
Notes and references
{ General procedure: Aryl bromide (1.0 mmol) in THF (2 mL) was added
to Rieke zinc (4 mL, 5 g/100 mL suspension in THF). After addition the
reaction mixture was heated at reflux and then concentrated in vacuo. The
aryl zinc was dissolved in DMA (4 mL) and transferred via cannula onto
solid copper(I) bromide–dimethyl sulfide complex (20 mg, 0.1 mmol).
Oxidant 3 (147 mg, 0.5 mmol) in DMA (2 mL) was then added and the
solution was kept stirring for 1 h at room temperature. The reaction
mixture was filtered through a plug of silica eluting with hexane and
EtOAc. The filtrate was concentrated in vacuo and the residue purified by
flash column chromatography on silica gel.
20 For syntheses of buflavine, see: (a) S. Kodama, H. Takita, T. Kajimoto,
K. Nishide and M. Node, Tetrahedron, 2004, 60, 4901; (b)
P. Sahakitpichan and S. Ruchirawat, Tetrahedron Lett., 2003, 44, 5239;
(c) C. Hoarau, A. Couture, E. Deniau and P. Grandclaudon, J. Org.
Chem., 2002, 67, 5846; (d) P. A. Patil and V. Snieckus, Tetrahedron Lett.,
1998, 39, 1325; (e) S. Kobayashi, S. Kihara, S. Shizu, S. Katayama,
H. Ikeda, K. Kitahiro and H. Matsumoto, Chem. Pharm. Bull., 1977, 25,
3312 (synthesis coincidentally predates the isolation and structural
elucidation of buflavine); (f) For the synthesis of buflavine analogues, see:
P. Appukkuttan, W. Dehaen and E. V. Eycken, Org. Lett., 2005, 7, 2723.
§ CCDC 609161–609164. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b610218b
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 3883–3885 | 3885