5106
R. J. Brown et al. / Tetrahedron Letters 45 (2004) 5103–5107
11. Saygili, N.; Brown, R. J.; Day, P.; Hoelzl, R.; Kathir-
gamanathan, P.; Mageean, E. R.; Ozturk, T.; Pilkington,
M.; Qayyum, M. M. B.; Turner, S. S.; Vorwerg, L.; Wallis,
J. D. Tetrahedron 2001, 57, 5015–5026.
12. Griffiths, J.-P.; Brown, R. J.; Vital, B.; Day, P.; Matthews,
C. J.; Wallis, J. D. Tetrahedron Lett. 2003, 44, 3127–
3131.
13. Griffiths, J.-P.; Arola, A. A.; Appleby, G.; Wallis, J. D.
Tetrahedron Lett. 2004, 45, 2813–2816.
14. Ozturk, T.; Saygili, N.; Ozkara, S.; Pilkington, M.; Rice,
C. R.; Tranter, D. A.; Turksoy, F.; Wallis, J. D. J. Chem.
Soc., Perkin Trans. 1 2001, 407–414.
15. (a) Zhang, B.; Tanaka, H.; Fujiwara, H.; Kobayashi, H.;
Fujiwara, E.; Kobayashi, A. J. Am. Chem. Soc. 2002, 124,
9982–9983; (b) Tanaka, H.; Kobayashi, H.; Kobayashi, A.
J. Am. Chem. Soc. 2002, 124, 10002–10003; (c) Coronado,
E.; Galan-Mascaros, J. R.; Gomez-Garcia, C. J.; Laukhin,
V. Nature 2000, 408, 447–449; (d) Ouahab, L. Coord.
Chem. Rev. 1998, 178, 1501–1531; (e) Segura, J. L.;
Martin, N. Angew. Chem., Int. Ed. 2001, 40, 1372–
1409.
16. Griffiths, J.-P.; Brown, R. J.; Wallis, J. D., unpublished
results.
17. Ozturk, T.; Povey, D. C.; Wallis, J. D. Tetrahedron 1994,
50, 11205–11212.
Thus a range of amide substituted organosulfur donors,
with a variety of hydrogen bonding possibilities, is now
available for conversion to radical cation salts. The 4-
acetyloxyphenylamide 46 was hydrolysed to give the
donor 47, which has both a N–H and an O–H donor.
Donor 43 is of interest since it has the potential for
binding a metal cation at the pyridyl side chain. The
cyclic voltammetries26 of the novel ET derivatives
showed two reversible oxidation peaks: 42–45 at very
similar potentials to ET (0.48 and 0.89 V), and 18 (0.50
and 0.91 V) and 24 (0.52and 0.94 V) at slightly higher
values. Preliminary electrocrystallisation experiments
have produced several microcrystalline salts.
Acknowledgements
We thank the EPSRC and Nottingham Trent University
for studentships (R.J.B. and J.P.G.) and the EPSRC
Mass Spectrometry Service for measurements. We thank
the Chemistry Department, University of Warwick for
help with several spectroscopic measurements.
18. Yang, X.; Rauchfuss, T. B.; Wilson, S. J. Chem. Soc.,
Chem. Commun. 1990, 34–36.
19. Kasina, S.; Fritzberg, A. R.; Johnson, D. L.; Eshima, D.
J. Med. Chem. 1986, 29, 1933–1940.
20. Compound 18: Mp 149–150 °C; 1H NMR (270 MHz,
CDCl3) d: 4.03 (1H, m, 5-H), 3.73 (3H, s, OCH3), 3.33
(1H, dd, J ¼ 13:2, 3.1 Hz, 6-Ha), 3.29 (4H, s, 50, 60-H2),
3.14 (1H, dd, J ¼ 13:2, 5.6 Hz, 6-Hb), 2.84 (2H, d,
J ¼ 6:9 Hz, CH2CO); 13C NMR (67.8 MHz, CDCl3) d:
170.8 (C@O), 113.8, 113.5, 112.7, 112.0, 111.4 (sp2-C),
52.1 (OCH3), 39.4 (CH2CO), 38.6 (5-C) 34.7 (6-C), 30.2
(50-, 60-C); mmax /cmÀ1 (KBr) 2947, 1730, 1432, 1303, 1253,
1202, 1014, 772. Found C, 34.3; H, 2.6%, C13H12O2S8
requires C, 34.2; H, 2.7%.
References and notes
1. (a) Williams, J. M.; Beno, M. A.; Wang, H. H.; Leung, P.
C. W.; Enge, T. J.; Geiser, U.; Carlson, K. D. Acc. Chem.
Res. 1985, 18, 261–267; (b) Singleton, J.; Mielke, C. Cont.
Phys. 2002, 43, 63–96.
2. (a) Williams, J. M.; Ferraro, J. R.; Thorn, R. J.; Carlson,
K. D.; Geiser, U.; Wang, H. H.; Kini, A. M.; Whangbo,
M.-H. Organic Superconductors: Synthesis Structure Prop-
erties and Theory; Prentice Hall Englewood Cliffs: New
Jersey, 1992; (b) Ishiguo, T.; Yamaji, K.; Saito, G. Organic
Superconductors; Springer: Berlin, 1998.
3. Kini, A. M.; Geiser, U.; Wang, H. M.; Carlson, K. D.;
Williams, J. M.; Kwok, W. K.; Vandervoort, K. G.;
Thompson, J. E.; Stopka, D. L.; Jung, D.; Whangbo,
M.-H. Inorg. Chem. 1990, 29, 2555–2557.
4. (a) Izuoka, A.; Tachikawa, T.; Sugawara, T.; Suzuki, Y.;
Konno, M.; Saito, Y.; Shinohara, H. J. Chem. Soc., Chem.
Commun. 1992, 1472–1473; (b) Konarev, D. V.; Kovalev-
sky, Yu.; Coppens, P.; Lyubovskaya, R. N. Chem.
Commun. 2000, 2357–2358.
5. (a) Kurmoo, M.; Graham, A. M.; Day, P.; Coles, S.;
Hursthouse, M. J.; Caulfield, J. L.; Singleton, J.; Pratt, F.
L.; Hayes, W.; Ducasse, L.; Guionneau, P. J. Am. Chem.
Soc. 1995, 117, 12209–12217; (b) Turner, S. S.; Michaut,
C.; Durot, S.; Day, P.; Gelbrich, T.; Hursthouse, M. B. J.
Chem. Soc., Dalton Trans. 2000, 905–909; (c) Setifi, F.;
Golhen, S.; Ouahab, L.; Turner, S. S.; Day, P. Cryst. Eng.
Commun. 2002, 4, 1–6.
6. (a) Dunitz, J. D.; Karrer, A.; Wallis, J. D. Helv. Chim.
Acta 1986, 89, 89–90; (b) Karrer, A.; Wallis, J. D.; Dunitz,
J. D.; Hilti, B.; Mayer, C. W.; Burkle, M.; Pfeiffer, J. Helv.
Chim. Acta 1987, 70, 942–953.
7. Kini, A. M.; Parakka, J. P.; Geiser, U.; Wang, H.-H.;
Rivas, F.; DiNino, E.; Thomas, S.; Dudek, J. D.;
Williams, J. M. J. Mater. Chem. 1999, 9, 883–892.
8. Ozturk, T. Tetrahedron Lett. 1996, 2821–2824.
9. Ertas, E.; Ozturk, T. Chem. Commun. 2000, 2039–2040.
10. Dautel, O. J.; Fourmigue, M. J. Chem. Soc., Perkin Trans.
1 2001, 3399–3402.
21. Neilands, O. Y.; Katsens, Y. Y.; Kreitsberga, Y. N. Zh.
Org. Khim. 1989, 25, 658–660.
1
22. Compound 44: Mp 184–185 °C (dec); H NMR (DMSO-
d6) d: 7.49 (1H, br s, NH), 6.84 (1H, br s, NH), 4.14 (1H,
m, 5-H), 3.31 (4H, s, 50-, 60-H2), 3.30 (1H, dd, J ¼ 13:4,
5.7 Hz, 6-Ha), 3.20 (1H, dd, J ¼ 13:4, 3.2Hz, 6- Hb), 2.62
(2H, d, J ¼ 7:2Hz, C H2CO); 13C NMR (67.8 MHz,
DMSO-d6) d: 169.5 (C@O), 112.4, 111.7, 110.4 (sp2-C),
39.3 (CH2CO), 38.9 (5-C), 33.1 (6-C), 28.3 (50-, 60-C); mmax
/
cmÀ1 (KBr) 3379, 3180, 2918, 2855, 1655, 1625, 1407,
1264, 908, 770, 609; HRMS (EI): found: 440.8613
(MþH)þ, C12H11NOS8 þ Hþ requires: 440.8606.
23. Compound 45: Mp 196–197 °C; 1H NMR (270 MHz,
DMSO-d6) d: 7.57 (2H, d, J ¼ 8:4 Hz, 2 ꢀ Ar-H), 7.29
(2H, t, J ¼ 8:3 Hz, 2 ꢀ Ar-H), 7.04 (1H, t, J ¼ 8:3 Hz, Ar-
H), 4.23 (1H, m, 5-H), 3.38 (2H, m, 6-H2), 3.32(4H, s, 5 0-,
60-H2), 2.88 (2H, m, 6-CH2CO); 13C NMR (67.8 MHz,
DMSO-d6) d: 167.7 (C@O), 138.8, 128.7, 123.3, 119.1
(6 ꢀ Ar-C), 112.8 (sp2-C), 41.5 (CH2CO), 38.1 (5-C), 34.4
(6-C), 29.5 (50-, 60-C); mmax/cmÀ1 (KBr) 3049, 2966, 2920,
2849, 1654, 1596, 1522, 1497, 1442, 1410, 1311, 1284, 1256,
888; HRMS (EI): found: 516.8930 (MþH)þ,
C18H15NOS8 þ Hþ requires: 516.8919.
24. Compound 42: Mp 170–171 °C; 1H NMR (270 MHz,
CDCl3) d: 5.55 (1H, br s, NH), 4.10 (1H, m, 5-H), 3.37
(1H, dd, J ¼ 13:4, 3.0 Hz, 6-Ha), 3.30 (2H, m, NHCH2),
3.29, (4H, s, 50-, 60-H2), 3.13 (1H, dd, J ¼ 13:4, 5.0 Hz, 6-
Hb), 2.61 (2H, m, CH2CO), 1.13 (3H, t, J ¼ 7:3 Hz, NH-
CH2CH3); 13C NMR (67.8 MHz, CDCl3) d: 168.5 (C@O),
113.9, 111.3 (sp2-C), 41.6 (CH2CO), 38.5 (5-C), 34.8 (6-C),