Organic Letters
Letter
4) where π−π interactions18 become effective, consistent with
M. D.; Raymond, K. N. Chem. Soc. Rev. 2007, 36, 161. (d) Hariharan, M.;
Karunakaran, S. C; Ramaiah, D. Org. Lett. 2007, 9, 417. (e) Jisha, V. S.;
Arun, K. T.; Hariharan, M.; Ramaiah, D. J. Am. Chem. Soc. 2006, 128,
6024. (f) Kuruvilla, E.; Nandajan, P. C.; Schuster, G. B.; Ramaiah, D.
Org. Lett. 2008, 10, 4295.
(6) (a) Schneider, H.-J.; Yatsimirsky, A. K. Chem. Soc. Rev. 2008, 37,
263. (b) Schneider, H.-J. Angew. Chem., Int. Ed. 2009, 48, 3924.
(c) Linton, B.; Hamilton, A. D. Chem. Rev. 1997, 97, 1669. (d) Singh, N.
J.; Lee, H. M.; Hwang, I.-C.; Kim, K. S. Supramol. Chem. 2007, 19, 321.
(7) (a) Xu, Z.; Kim, S. K.; Yoon, J. Chem. Soc. Rev. 2010, 39, 1457.
(b) Caltagirone, C.; Gale, P. A. Chem. Soc. Rev. 2009, 38, 520. (c) Gong,
H. Y.; Rambo, B. M.; Karnas, E.; Lynch, V. M.; Sessler, J. L. Nat. Chem.
2010, 2, 406.
1
the experimental H NMR data (Figure S19) which show
splitting of aromatic protons of cyclophane 3. Such π−π
interaction between naphthalene moieties would cause excimer
formation.
The experiments and calculations reported here provide new
insights into the selectivities of novel fluorescent chemosensors
which sense AMP, GTP, and PPi through fluorescence
enhancement/quenching over other biologically relevant anions
in an aqueous solution of physiological pH 7.4. The bridging
benzyl moiety of 1 plays a major role in attaining selective
fluorescence enhancement/quenching (monomer/excimer) to-
ward AMP by developing additional π−π interactions along with
ionic interactions. Significant and selective fluorescence
quenching of 2 for GTP arises from the strengthened H-bonding
developed between the −NH2 group of the guanine moiety and
N of the acridine moiety in a perpendicular manner, which was
assisted by the phosphate−imidazolium ionic H-bonding. In the
case of 3, the intermolecular π−π interaction develops along with
ionic interactions upon complexation with PPi in aqueous
solution which results in excimer formation at 407 nm. The H−π,
π−π, charged H-bond, and ionic H-bond interactions were
confirmed by DFT calculations and NMR spectroscopy.
(8) Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Chem. Soc. Rev. 2006,
35, 355.
(9) (a) Choquesillo-Lazarte, D.; Brandi-Blanco, M. P.; Garcia-Santos,
I.; Gonzalez-Perez, J. M.; Castineiras, A.; Niclos-Gutierrez, J. Coord.
Chem. Rev. 2008, 252, 1241. (b) Ahmed, N.; Geronimo, I.; Hwang, I.-C.;
Singh, N. J.; Kim, K. S. Chem.Eur. J. 2011, 17, 8542.
(10) (a) Diederich, F. In Cyclophanes, Monographs in Supramolecular
Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: London,
1991. (b) Droz, A. S.; Neidlein, U.; Anderson, S.; Seiler, P.; Diederich, F.
Helv. Chim. Acta 2001, 84, 2243. (c) Flood, A. H.; Liu, Y.; Stoddart, J. F.
In Modern Cyclophane Chemistry; Gleiter, R., Hopf, H., Eds.; Wiley-
VCH: Weinheim, 2005.
(11) Gleiter, R.; Hopf, H. Modern Cyclophane Chemistry; WILEY-VCH
Verlag GmbH & Co. KGaA: Weinheim, 2004; p 519.
ASSOCIATED CONTENT
* Supporting Information
Experimental details. This material is available free of charge via
■
(12) (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.;
Huxley, A. J. M.; McCoy, C. P.; Radamacher, J. T.; Rice, T. E. Chem. Rev.
1997, 97, 1515. (b) Miyaji, H.; Sessler, J. L. Angew. Chem., Int. Ed. 2001,
40, 154.
(13) Kwon, J. Y.; Singh, N. J.; Kim, H. N.; Kim, S. K.; Kim, K. S.; Yoon,
J. J. Am. Chem. Soc. 2004, 126, 8892.
(14) (a) Shirinfar, B.; Ahmed, N.; Park, Y. S.; Cho, G.-S.; Youn, I. S.;
Han, J.-K.; Nam, H. G.; Kim, K. S. J. Am. Chem. Soc. 2013, 135, 90−93.
(b) Zhou, Y.; Xu, Z.; Yoon, J. Chem. Soc. Rev. 2011, 40, 2222.
(15) (a) Cametti, M.; Rissanen, K. Chem. Commun. 2009, 2809.
S
AUTHOR INFORMATION
Corresponding Authors
■
Notes
́ ́
(b) Molina, P.; Tarraga, A.; Oton, F. Org. Biomol. Chem. 2012, 10,
1711−1724. (c) Suresh, V.; Ahmed, N.; Youn, I. S.; Kim, K. S. Chem.
Asian J. 2012, 7, 658. (d) Xu, Z.; Singh, N. J.; Kim, S. K.; Spring, D. R.;
Kim, K. S.; Yoon, J. Chem.Eur. J. 2011, 17, 1163.
The authors declare no competing financial interest.
(16) (a) Kang, N.-Y.; Ha, H.-H.; Yun, S.-W.; Yu, Y. H.; Chang, Y.-T.
Chem. Soc. Rev. 2011, 40, 3613. (b) McCleskey, S. C.; Griffin, M. J.;
Schneider, S. E.; McDevitt, J. T.; Anslyn, E. V. J. Am. Chem. Soc. 2003,
125, 1114. (c) Xu, Z.; Singh, N. J.; Lim, J.; Pan, J.; Kim, H. N.; Park, S.;
Kim, K. S.; Yoon, J. J. Am. Chem. Soc. 2009, 131, 15528. (d) Ahmed, N.;
Shirinfar, B.; Youn, I.-S.; Bist, A.; Suresh, V.; Kim, K. S. Chem. Commun.
2012, 48, 2662.
ACKNOWLEDGMENTS
■
This work was supported by NRF (National honor scientist
program: 2010-0020414) and KISTI (KSC-2011-G3-02).
Funding by Novartis (postgraduate fellowship to N.A.) is
gratefully acknowledged.
(17) Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145.
(18) Kołaski, M.; Arunkumar, C. R.; Kim, K. S. J. Chem. Theory Comput.
2013, 9, 847.
(19) Claramunt, R. M.; Elguero, J.; Meco, T. J. Heterocycl. Chem. 1983,
20, 1245.
REFERENCES
■
(1) (a) Kubik, S. Chem. Soc. Rev. 2009, 38, 585. (b) Hof, F.; Craig, S. L.;
Nuckolls, C.; Rebek, J. Angew. Chem., Int. Ed. 2002, 41, 1488. (c) Oh, K.
S.; Lee, C.-W.; Choi, H. S.; Lee, S. J.; Kim, K. S. Org. Lett. 2000, 2, 2679.
(2) (a) Bondy, C. R.; Gale, P. A.; Loeb, S. L. J. Am. Chem. Soc. 2004,
126, 5030. (b) Chmielewski, M. J.; Charon, M.; Jurczak, J. Org. Lett.
2004, 6, 3501. (c) Kim, H. N.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H.
Chem. Soc. Rev. 2011, 40, 79. (c) Chun, Y.; Singh, N. J.; Hwang, I.-C.;
Lee, J. W.; Yu, S. U.; Kim, K. S. Nat. Commun. 2013, 4, 1797.
(20) Carole, D. G.; Michel, D. M.; Julien, C.; Florence, D.; Anna, N.;
Sev
́ ́
erine, J.; Gerard, D.; Pierre, T.-D.; Jean-Pierre, G. Bioorg. Med. Chem.
2005, 13, 5560.
(21) (a) Gale, P. A. Chem. Soc. Rev. 2010, 39, 3746−3771. (b) Kim, S.
K.; Sessler, J. L. Chem. Soc. Rev. 2010, 39, 3784.
(3) (a) Atwood, J. L.; Davies, J. E. D.; Macnicol, D. D.; Vogtle, F.; Lehn,
̈
(22) (a) Homocianu, M.; Airinei, A.; Dorohoi, D. O. J. Adv. Res. Phy.
2011, 2, 0111051-9. (b) Zhang, D.; Jiang, X.; Yang, H.; Martinez, A.;
Feng, M.; Dong, Z.; Gao, G. Org. Biomol. Chem. 2013, 11, 3375.
(23) (a) Connors, K. A. Binding Constants: The Measurement of
Molecular Complex Stability; Wiley: New York, 1987. (b) Cielen, E.;
Tahri, A.; Heyen, K. V.; Hoornaert, G. J.; De Schryver, F. C.; Boens, N. J.
Chem. Soc., Perkin Trans. 2 1998, 1573.
J.-M. Comprehensive Supramolecular Chemistry; Elsevier Science: Oxford,
1996; Vol. 1. (b) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew.
Chem., Int. Ed. 2003, 42, 1210. (c) Joseph, J.; Eldho, N. V.; Ramaiah, D. J.
Phys. Chem. 2003, 107, 4444. (d) Xu, Z.; Song, N. R.; Moon, J. H.; Lee, J.
Y.; Yoon, J. Org. Biomol. Chem. 2011, 9, 8340.
(4) (a) Chen, X.; Kang, S.; Kim, M. J.; Kim, J.; Kim, Y. S.; Kim, H.; Chi,
B.; Kim, S.-J.; Lee, J. Y.; Yoon, J. Angew. Chem., Int. Ed. 2010, 49, 1422.
(b) Chen, X.; Zhou, Y.; Peng, X.; Yoon, J. Chem. Soc. Rev. 2010, 39, 2120.
(5) (a) Jisha, V. S.; Arun, K. T.; Hariharan, M.; Ramaiah, D. J. Phys.
Chem. B 2010, 114, 5912. (b) Ojida, A.; Takashima, I.; Kohira, T.;
Nonaka, H.; Hamachi, I. J. Am. Chem. Soc. 2008, 130, 12095. (c) Pluth,
(24) Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem.
1996, 68, 1414.
2153
dx.doi.org/10.1021/ol500613y | Org. Lett. 2014, 16, 2150−2153