T. Kiho et al. / Bioorg. Med. Chem. Lett. 13 (2003) 2315–2318
2317
Table 1. Antibacterial spectrum of globomycin (1a), SF-1902A 5 (1b) and the synthetic analogues (1c–1i)
Organisms
MIC (mg/mL)
1a
1b
3.13
3.13
6.25
3.13
1.56
1c
1.56
1.56
3.13
1.56
1.56
3.13
3.13
1d
1e
1f
1g
25
25
100
50
1h
25
25
50
50
12.5
100
>100
>100
>100
>100
>100
>100
1i
Escherichia coli SANK 70569 (NIHJ JC-2)
Escherichia coli SANK 72290
Salmonella enteritidis SANK 72390
Klebsiella pneumoniae SANK 72490
Enterobacter cloacae 846
Enterobacter cloacae SANK 72690
Serratia marcescens SANK 72790
Proteus vulgaris SANK 72890
Morganella morganii SANK 72990
Pseudomonas aeruginosa SANK 73090
Pseudomonas aeruginosa SANK 73190
Pseudomonas aeruginosa SANK 3719
12.5
12.5
25
25
6.25
12.5
12.5
50
25
6.25
>100
>100
>100
>100
100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
100
>100
>100
>100
>100
>100
>100
>100
12.5
50
100
12.5
12.5
>100
>100
>100
>100
>100
50
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
antibacterial activity. Four-carbon increase in the fatty
acid side chain enhanced the activity by 4- to 8-fold
compared with 1a. Therefore, it may be possible to
produce a more potent inhibitor.
only Gram-negative bacteria but also Gram-positive
bacteria. Now, further investigations on SARs are cur-
rently underway.
With regard to stereoisomers, the activity of 1d dimin-
ished and the activity of 1e and 1f were completely lost.
In particular, the stereochemistry of the hydroxyl group
in l-Thr is quite important for the activity. Compound
1e was inactive although the deoxy derivative 1g and
methyl ether derivative 1h retained their activity.
Therefore, the hydroxyl group in l-allo-Thr is not
essential for the activity.15 Finally, N-demethyl deriva-
tive 1i also lost its activity.
Measurement of Antibacterial Activity
Bacteria were inoculated on Nutrient Agar (Eiken
Chemical Co., Ltd.) and the MIC was determined by
the agar dilution method.16
References and Notes
1. (a) Taxonomy of producing organism and fermentation:
Inukai, M.; Enokita, R.; Torikata, A.; Nakahara, M.; Iwado,
S.; Arai, M. J. Antibiot. 1978, 31, 410. (b) Isolation and phys-
ico-chemical and biological characterization: Inukai, M.;
Nakajima, M.; Osawa, M.; Haneishi, T.; Arai, M. J. Antibiot.
1978, 31, 421. (c) Structural determination of 1a: Nakajima,
M.; Inukai, M.; Haneishi, T.; Terahara, A.; Arai, M. J. Anti-
biot. 1978, 31, 426. (d) Kogen, H.; Kiho, T.; Nakayama, M.;
Furukawa, Y.; Kinoshita, T.; Inukai, M. J. Am. Chem. Soc.
2000, 122, 10214. (e) Kiho, T.; Nakayama, M.; Kogen, H.
Tetrahedron 2003, 59, 1685.
Surprisingly, 1c showed moderate activity against all
Gram-positive bacteria tested such as Staphylococcus
aureus (MRSA) (MIC=12.5 mg/mL) even though 1a
and 1b were almost inactive as shown in Table 2. This is
the first example that the antibacterial spectrum of glo-
bomycin analogues was expanded to also include Gram-
positive bacteria. These results suggest that lipoproteins
are essential for not only Gram-negative bacteria but
also Gram-positive bacteria and signal peptidase II
inhibitors would probably be effective against most
bacteria. Finding such an inhibitor would lead to
development of a new class of antibiotics. Finally, the
antifungal activity of these analogues was tested. How-
ever, no activity was observed against Candida albicans,
Candida glabrata and Aspergillus clavatus.
2. (a) Omoto, S.; Suzuki, H.; Inouye, S. J. Antibiot. 1979, 32,
83. (b) Omoto, S.; Ogino, H.; Inouye, S. J. Antibiot. 1981, 34,
1416.
3. Pugsley, A. P. Microbiol. Rev. 1993, 57, 50.
4. (a) Inukai, M.; Takeuchi, M.; Shimizu, K.; Arai, M. J.
Antibiot. 1978, 31, 1203. (b) Hussain, M.; Ichihara, S.;
Mizushima, S. J. Biol. Chem. 1980, 255, 3707. (c) Dev, I. K.;
Harvey, R. J.; Ray, P. H. J. Biol. Chem. 1985, 260, 5891. (d)
Ichihara, S.; Hussain, M.; Mizushima, S. J. Biol. Chem. 1981,
256, 3125. (e) Witke, C.; Gotz, F. FEMS Microl. Lett. 1995,
126, 233. (f) Braun, B.; Wu, H. C. In Bacterial Cell Wall;
Ghuysen, J. M., Hakenbeck, R., Eds.; Elsevier: Amsterdam,
1994; Chapter 14.
In summary, we disclosed the SAR of synthetic new
globomycin analogues and succeeded in producing a
promising antibiotic, which shows activity against not
Table 2. Antibacterial spectrum of globomycin (1a–1c) against
Gram-positive bacteria
5. Cavard, D. Arch. Microbiol. 1998, 171, 50.
6. Synthesis of three fragments, Fragment A, B and C, were
performed by the method described in refs 1d and 1e.
7. Abiko, A.; Liu, J.-F.; Masamune, S. J. Am. Chem. Soc.
1997, 119, 2586.
Organisms
MIC (mg/mL)
1a
1b
1c
8. PyBOP:9 (benzotriazolyloxy) tris(pyrrolydino)phosphonium
hexafluorophosphate, DEPC:10 diethylcyanophosphate, DIPC;
diisopropylcarbodiimide, HATU:12 O-(7-azabenzotriazole-1-
yl)-1,1,3,3-tetramethyluronium hexafluorophosphate, TBTU:12
2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetra-
fluoroborate.
Staphylococcus aureus SANK 70668
Staphylococcus aureus SANK 71790
Staphylococcus aureus SANK 71890a
Enterococcus faecalis SANK 71990
>100
>100
>100
>100
50
50
50
100
6.25
6.25
12.5
12.5
aMRSA.