Electr on ic Con tr ol of Ch ir a l Qu a ter n a r y Cen ter Cr ea tion in th e
In tr a m olecu la r Asym m etr ic Heck Rea ction
Carl A. Busacca,* Danja Grossbach,† Scot J . Campbell, Yong Dong, Magnus C. Eriksson,
Robert E. Harris, Paul-J ames J ones, J i-Young Kim, J on C. Lorenz, Keith B. McKellop,
Erin M. O’Brien, Fenghe Qiu, Robert D. Simpson, Lana Smith, Regina C. So,
Earl M. Spinelli, J ana Vitous, and Chiara Zavattaro
Departments of Chemical Development and Analytical Sciences, Boehringer-Ingelheim Pharmaceuticals,
Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877
cbusacca@rdg.boehringer-ingelheim.com
Received April 3, 2004
The Boehringer-Ingelheim phosphinoimidazoline (BIPI) ligands were applied to the formation of
chiral quaternary centers in the asymmetric Heck reaction. Several different substrates were
examined in detail, using more than 70 members of this new ligand class. Hammett relationships
were determined through systematic variation of the ligand electronics. All substrates showed
essentially the same Hammett behavior, where enantioselectivity increased as the ligands were
made more electron-deficient. Ligand optimization has led to catalysts which give the highest
enantioselectivities reported to date for these difficult systems.
In tr od u ction
catalysis. The principal ligand classes which have been
utilized are the PHOX ligands as employed by Pfaltz and
others4a-e and BINAP and its derivatives.4e-k We have
recently reported the application of a new patented ligand
class, the BIPI ligands, to chiral quaternary center
formation in the AHR.5 We report here full details of the
electronic control of asymmetric induction in four differ-
ent substrates in this reaction using the BIPI ligands.
The asymmetric Heck reaction (AHR) is a powerful
method for the creation of tertiary and quaternary
stereocenters via formation of a new C-C bond. Recent
reviews1 document the utility of this reaction in asym-
metric synthesis, and it has proven to be an excellent
method for the assembly of densely functionalized natu-
ral products.2 The AHR has developed into a very
important synthetic tool since the pioneering work of
Shibasaki and Overman.3
Resu lts a n d Discu ssion
The most successful substrate classes have been those
that lead to formation of tertiary stereocenters, particu-
larly the dihydrofurans, dihydropyrroles, and related
cyclic olefins. Quaternary centers are more difficult to
control and remain an important problem in asymmetric
The BIPI ligands (Figure 1) were designed so that gross
electronic tuning could be achieved by simply varying the
nitrogen substituent R4. Alkyl groups in this position lead
to strongly basic systems, while acyl and sulfonyl R4
groups lead to more neutral ligands. This type of elec-
tronic flexibility is essential if one ligand class is to be
* To whom correspondence should be addressed.
† Current address: Schering AG Process Research, D-13342 Berlin.
(1) (a) Link, J . T. In Organic Reactions; Overman, L. E., Ed.;
Wiley: New J ersey, 2002; Vol. 60, pp 157-534. (b) Shibasaki, M.; Vogl,
E. M. In Comprehensive Asymmetric Catalysis; J acobsen, E. N., Pfaltz,
A., Yamamoto, H., Eds.; Springer-Verlag: Heidelberg, 1999; pp 457-
487. (c) Shibasaki, M.; Miyazaki, F. In Handbook of Organopalladium
Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: Hoboken,
2002; Vol. 1, pp 1283-1315. (d) Guiry, P. J .; Hennessy, A. J .; Cahill,
J . P. Top. Catal. 1997, 4, 311-326. (e) Shibasaki, M.; Boden, C. D. J .;
Kojima, A. Tetrahedron 1997, 53 (22), 7371-7395.
(2) (a) For reviews, see: Dounay, A. B.; Overman, L. E. Chem. Rev.
2003, 103 (8), 2945-2963. (b) Shibasaki, M.; Kojima, A.; Shimizu, S.
J . Heterocycl. Chem. 1998, 35 (5), 1057-1064. For recent examples,
see: (c) Trost, B. M.; Thiel, O. R.; Tsui, H.-C. J . Am. Chem. Soc. 2003,
125 (43), 13155-13164. (d) Overman, L. E.; Kodanko, J . J . Angew.
Chem., Int. Ed. 2003, 42 (22), 2528-2531. (e) Overman, L. E.; Peterson,
E. A. Tetrahedron 2003, 59 (35), 6905-6919. (f) Mori, M.; Nakanishi,
M.; Kajishima, D.; Sato, Y. J . Am. Chem. Soc. 2003, 125 (32), 9801-
9807. (g) Artman, G. D., III; Weinreb, S. M. Org. Lett. 2003, 5 (9),
1523-1526. (h) Trost, B. M.; Tang, W. Angew. Chem., Int. Ed. 2002,
41 (15), 2795-2797. (i) Overman, L. E.; Lebsack, A. D.; Stearns, B. A.
J . Am. Chem. Soc. 2002, 124 (31), 9008-9009. (j) Shibasaki, M.;
Honzawa, S.; Mizutani, T. Tetrahedron Lett. 1999, 40 (2), 311-314.
(k) Overman, L. E.; Matsuura, T.; Poon, D. J . J . Am. Chem. Soc. 1998,
120 (26), 6500-6503.
(3) (a) Shibasaki, M.; Sato, Y.; Sodeoka, M. J . Org. Chem. 1989, 54,
4738-4739. (b) Overman, L. E.; Carpenter, N. E.; Kucera, D. J . J . Org.
Chem. 1989, 54 (25), 5846-5848. (c) Shibasaki, M.; Sodeoka, M. J .
Synth. Org. Chem. J pn. 1994, 52, 956-957. (d) Overman, L. E. Pure
Appl. Chem. 1994, 66, 1423-1430.
(4) (a) Pfaltz, A.; Loiseleur, O.; Hayashi, M.; Schmees, N. Synthesis
1997, 1338-1345. (b) Loiseleur, O.; Meier, P.; Pfaltz, A. Angew. Chem.,
Int. Ed. Engl. 1996, 35 (2), 200-202. (c) Hallberg, A.; Ripa, L. J . Org.
Chem. 1997, 62 (3), 595-602. (d) Namyslo, J . C.; Kaufmann, D. E.
Chem. Ber. 1997, 130 (9), 1327-1331. (e) Guiry, P. J .; Kiely, D.
Tetrahedron Lett. 2003, 44 (39), 7377-7380. (f) Ozawa, F.; Hayashi,
T. J . Organomet. Chem. 1992, 428, 267-277. (g) Ozawa, F.; Hayashi,
T.; Kubo, A. Tetrahedron Lett. 1992, 33 (11), 1485-1488. (h) Ozawa,
F.; Hayashi, T.; Kobatake, Y. Tetrahedron Lett. 1993, 34 (15), 2505-
2508. (i) Shibasaki, M.; Kondo, K.; Sodeoka, M. J . Org. Chem. 1995,
60 (14), 4322-4323. (j) Overman, L. E.; Poon, D. J . Angew. Chem.,
Int. Ed. Engl. 1997, 36 (5), 518-521. (k) Shibasaki, M.; Ohrai, K.;
Kondo, K.; Sodeoka, M. J . Am. Chem. Soc. 1994, 116 (26), 11737-
11748. (l) Overman, L. E.; Ashimori, A.; Bachand, B.; Poon, D. J . J .
Am. Chem. Soc. 1998, 120 (26), 6477-6487.
(5) (a) Busacca, C. A. U.S. Patent 6 316 620, 2001; European Patent
1218388. (b) Busacca, C. A.; Grossbach, D.; So, R. C.; O’Brien, E. M.;
Spinelli, E. M. Org. Lett. 2003, 5 (4), 595-598. (c) See also the
Supporting Information.
10.1021/jo049448z CCC: $27.50 © 2004 American Chemical Society
Published on Web 07/10/2004
J . Org. Chem. 2004, 69, 5187-5195
5187