M. Paira et al. / Tetrahedron Letters 48 (2007) 3205–3207
3207
14, 481–484; (e) Uneyama, K.; Ueda, K.; Torii, S. Chem.
Lett. 1986, 15, 1201–1202; (f) Zhou, J.-Y.; Jia, Y.; Yao,
X.-B.; Wu, S.-H. Synth. Commun. 1996, 26, 2397–2406; (g)
Furstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 2533–
2534; (h) Csuk, R.; Schroder, C.; Hutter, S.; Mohr, K.
Tetrahedron: Asymmetry 1997, 8, 1411–1429; (i) Choud-
hury, P. K.; Foubelo, F.; Yus, M. Tetrahedron Lett. 1998,
39, 3581–3584; (j) Lee, A. S.-Y.; Chang, Y.-T.; Wang,
S.-H.; Chu, S.-F. Tetrahedron Lett. 2002, 43, 8489–8492; (k)
Mattes, H.; Benezra, C. Tetrahedron Lett. 1985, 26, 5697–
5698.
not undergo lactone formation, but instead self-coupling
products of methyl 2-(bromomethyl)acrylate were gen-
erated by radical-induced dimerization.
In conclusion, we have developed a mild and efficient
methodology for the preparation of synthetically impor-
tant substituted a-methylene-c-butyrolactones in satis-
factory yields via titanocene(III) chloride promoted
radical Barbier-type reaction of methyl 2-(bromo-
methyl)acrylate and aldehydes followed by in situ
lactonization.
4. (a) Mandal, P. K.; Maiti, G.; Roy, S. C. J. Org. Chem.
1998, 63, 2829–2834; (b) Roy, S. C.; Rana, K. K.; Guin, C.
J. Org. Chem. 2002, 67, 3242–3248; (c) Jana, S.; Guin, C.;
Roy, S. C. Tetrahedron Lett. 2004, 45, 6575–6577; (d) Jana,
S.; Guin, C.; Roy, S. C. Tetrahedron Lett. 2005, 46, 1155–
1157; (e) Mandal, S. K.; Jana, S.; Roy, S. C. Tetrahedron
Lett. 2005, 46, 6115–6117.
Acknowledgements
We thank the Department of Science and Technology,
New Delhi for financial assistance. M.P., S.J. and
S.K.M. thank the CSIR, New Delhi for awarding
fellowships.
5. RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994,
116, 986–997, and references cited therein.
6. Representative procedure: A solution of titanocene dichlo-
ride (249 mg, 1 mmol) in dry deoxygenated THF (10 mL)
was stirred with activated zinc dust (196 mg, 3 mmol)
(activated zinc dust was prepared by washing 20 g of
commercially available zinc dust with 60 mL of 4 N HCl
followed by thorough washing with water until the wash-
ings became neutral and finally washing with dry acetone
and then drying in vacuo) for 1 h under argon. The
resulting green solution was added dropwise to a stirred
solution of aldehyde 1i (80 mg, 0.5 mmol) and methyl
2-(bromomethyl)acrylate (90 mg, 0.5 mmol) in dry THF
(5 mL) over 1 h at room temperature under argon. The
reaction mixture was further stirred for an additional 4 h
and then decomposed by stirring with 20% aqueous H2SO4
(15 mL) for 11 h. Most of the THF was removed under
reduced pressure and the residue obtained was extracted
with diethyl ether (4 · 25 mL). The combined ether
layer was successively washed with aqueous NaHCO3
(2 · 15 mL), water (2 · 10 mL), brine (10 mL) and finally
dried (Na2SO4). After removal of the solvent under reduced
pressure, the crude residue obtained was purified by column
chromatography over silica gel (10% ethyl acetate in
petroleum ether) to afford lactone 2i (76 mg, 66%) as a
viscous oil. IR (neat): 1764, 1604, 1492, 1249, 1224, 1130,
References and notes
1. (a) Kupchan, S. M.; Eakin, M. A.; Thomas, A. M. J. Med.
Chem. 1971, 14, 1147–1152; (b) Mischer, L. A. In Recent
Advances in Phytochemistry; Runeckles, V. C., Ed.; Plenum:
New York, 1975; Vol. 9, p 243; (c) Rodriguez, E.; Towers,
G. H. N.; Mitchell, J. C. Phytochemistry 1976, 15, 1573–
1580; (d) Cassady, J. M.; Suffness, M. In Anticancer Agents
Based on Natural Product Models; J. M.; Douros, J. D.,
Eds.; Academic: New York, 1980; Vol. 7, pp 201–270; (e)
Levine, J. A.; Ferrendelli, J. A.; Covey, D. F. J. Med.
Chem. 1986, 29, 1996–1999, and references cited therein; (f)
Hopper, M.; Kirby, G. C.; Kulkarni, M. M.; Kulkarni, S.
N.; Nagasampagi, B. A.; O’Neill, M. J.; Philipson, J. D.;
Rojatkar, S. R.; Warhurs, D. C. Eur. J. Med. Chem. 1990,
25, 717–723.
2. (a) Grieco, P. A. Synthesis 1975, 67–82, and references cited
therein; (b) Hoffmann, H. R.; Rabe, J. Angew. Chem., Int.
Ed. Engl. 1985, 24, 94–110, and references cited therein; (c)
Tanaka, K.; Yoda, H.; Isobe, Y.; Kaji, A. J. Org. Chem.
1986, 51, 1856–1866; (d) Srikrishna, A. J. Chem. Soc.,
Chem. Commun. 1987, 587–588; (e) Paquette, L. A.;
Mendez-Andino, J. Tetrahedron Lett. 1999, 40, 4301–
4304; (f) Gagnier, S. V.; Larock, R. C. J. Org. Chem.
2000, 65, 1525–1529.
1024 cmÀ1
;
1H NMR (CDCl3, 300 MHz): d 2.45 (t,
J = 2.1 Hz, 1H), 2.72–2.79 (m, 1H), 3.37 (ddt, J = 17.3,
8.3, 2.4 Hz, 1H), 4.65 (d, J = 2.2 Hz, 2H), 5.55 (t,
J = 2.3 Hz, 1H), 5.67 (dd, J = 8.1, 6.0 Hz, 1H), 6.19 (t,
J = 2.6 Hz, 1H), 6.90–6.94 (m, 2H), 7.20–7.26 (m, 2H); 13
C
3. (a) Ohler, E.; Reininger, K.; Schmidt, U. Angew. Chem.,
Int. Ed. Engl. 1970, 9, 457–458; (b) Hegedus, L. S.; Wagner,
S. D.; Waterman, E. L.; Siirala-Hansen, K. J. Org. Chem.
1975, 40, 593–598; (c) Hosomi, A.; Hashimoto, H.; Sakurai,
H. Tetrahedron Lett. 1980, 21, 951–954; (d) Okuda, Y.;
Nakatsukasa, S.; Oshima, K.; Nozaki, H. Chem. Lett. 1985,
NMR (CDCl3, 75 MHz): d 35.6, 56.3, 75.0, 76.3, 78.5,
112.4, 122.0, 122.4, 126.4, 129.5, 129.7, 135.0, 154.4, 171.0;
HRMS calcd for C14H12O3Na [M+Na]+ 251.0684. Found:
251.0623.
7. Jana, S.; Roy, S. C. Tetrahedron Lett. 2006, 47, 5949–5951.