Angewandte
Chemie
hydrogen bonding, and covalent nucleophilic catalysis) allows
this challenging transformation to take place under mild
reaction conditions and with broad substrate scope. Interest-
ingly, and in contrast to many enzymes, these bifunctional
catalysts function by sequestering substrates from hydro-
phobic organic solvents into hydrophilic active sites. This
study adds to a growing body of evidence suggesting that
dual-activation catalysis with simple bifunctional organic
frameworks holds substantial promise for asymmetric syn-
thesis.[25] Our current efforts are focused on further develop-
ment of conjugate addition reactions promoted by thiourea
amine derivatives, as well as on the design of new bifunctional
frameworks for use in asymmetric catalysis.
[1] For a timely review, see: B. List, Chem. Commun. 2006, 819 –
824.
[2] a) S. Pizzarello, A. L. Weber, Science 2004, 303, 1151; b) F.
Tanaka, R. Thayumanavan, N. Mase, C. F. Barbas III, Tetrahe-
dron Lett. 2004, 45, 325 –328; c) A. Córdova, I. Ibrahem, J.
Casas, H. SundØn, M. Engqvist, E. Reyes, Chem. Eur. J. 2005, 11,
4772 –4784; d) M. Amedjkouh, Tetrahedron: Asymmetry 2005,
16, 1411 –1414; e) A. Córdova, W. Zou, I. Ibrahem, E. Reyes, M.
Engqvist, W.-W. Liao, Chem. Commun. 2005, 3586 –3588; f) W.
Zou, I. Ibrahem, P. Dziedzic, H. SundØn, A. Córdova, Chem.
Commun. 2005, 4946 –4948; g) I. Ibrahem, W. Zou, M. Engqvist,
Y. Xu, A. Córdova, Chem. Eur. J. 2005, 11, 7024 –7029; h) A.
Bassan, W. Zou, E. Reyes, F. Himo, A. Córdova, Angew. Chem.
2005, 117, 7190 –7194; Angew. Chem. Int. Ed. 2005, 44, 7028 –
7032; i) Y. Xu, A. Córdova, Chem. Commun. 2006, 460 –462;
j) Y. Xu, W. Zou, H. SundØn, I. Ibrahem, A. Córdova, Adv.
Synth. Catal. 2006, 348, 418 –424.
Experimental Section
[3] a) E. D. Bergmann, E. Zimkin, S. Pinchas, Rec. Trav. Chim. 1952,
71, 168 –191; b) E. D. Bergmann, Y. Hirshberg, E. Zimkin, S.
Pinchas, Rec. Trav. Chim. 1952, 71, 192 –199; c) E. D. Bergmann,
E. Meeron, Y. Hirshberg, S. Pinchas, Rec. Trav. Chim. 1952, 71,
200 –212; d) B. Witkop, J. Am. Chem. Soc. 1956, 78, 2873 –2882;
e) M. Pfau, C. Ribire, J. Chem. Soc. D 1970, 66 – 67; f) R. A.
Clark, D. C. Parker, J. Am. Chem. Soc. 1971, 93, 7257 –7261;
g) B. De Jeso, J.-C. Pommier, J. Chem. Soc. Chem. Commun.
1977, 565 –566; h) B. De Jeso, J.-C. Pommier, J. Organomet.
Chem. 1977, 137, 23 –29; i) R. Knorr, A. Weiss, P. Lꢀw, E.
Rꢁpple, Chem. Ber. 1980, 113, 2462 –2489; j) D. R. Boyd, W. B.
Jennings, L. C. Waring, J. Org. Chem. 1986, 51, 992 –995; k) B.
Capon, Z.-P. Wu, J. Org. Chem. 1990, 55, 2317 –2324.
(2S,3R)-2,3-Dimethyl-4-nitro-2-phenylbutanal (6): Under a positive
pressure of nitrogen at room temperature, thiourea catalyst 1
(75.3 mg, 0.20 mmol, 20 mol%) was loaded into an oven-dried 25-
mL round-bottomed flask equipped with a magnetic stir bar, rubber
septum, and nitrogen inlet. The catalyst was dissolved in dichloro-
methane (6.7 mL). Water (90.1 mL, 5.0 mmol, 5.0 equiv) and 2-
phenylpropionaldehyde (265.4 mL, 2.0 mmol, 2.0 equiv) were subse-
quently added by syringe. The resulting clear colorless solution was
stirred for approximately 2 min. Addition of 1-nitropropene (87.1 mg,
1.0 mmol, 1.0 equiv) by syringe produced a light yellow solution. The
rubber septum was quickly replaced with a yellow polyethylene
stopper (to avoid absorption of dichloromethane by the septum), and
the reaction mixture was stirred for 24 h at room temperature.
Aqueous hydrochloric acid solution (1m, 7 mL) was added to the
reaction flask, and the resulting biphasic mixture was stirred
vigorously for 5 min at room temperature. The biphasic mixture
was transferred to a separating funnel, and additional portions of
dichloromethane (30 mL) and 1m HCl (30 mL) were added. The
phases were separated, and the aqueous layer was washed with
dichloromethane (30 mL). The organic layers were combined and
washed with saturated aqueous sodium bicarbonate solution (30 mL),
saturated aqueous sodium chloride solution (30 mL), dried over
anhydrous sodium sulfate, filtered, and concentrated under reduced
pressure. The resulting yellow residue was purified by chromatog-
raphy on silica (8% diethyl ether/hexanes), providing the title
compound as a colorless/light yellow liquid in 91% yield (201.1 mg)
in 23:1 diastereomeric ratio and with 99% ee (major diastereomer) as
determined by HPLC (Chiralpak AD-H, 2.0% propan-2-ol/hexanes,
1.0 mLminÀ1, 230 nm; tr(minor enantiomer, minor diastereomer) =
11.83 min, tr(major enantiomer, minor diastereomer) = 12.87 min,
tr(minor enantiomer, major diastereomer) = 13.82 min, tr(major en-
antiomer, major diastereomer) = 15.48 min). [a]2D5 = + 88.68 (c =
[4] D. J. Hupe in New Comprehensive Biochemistry, Vol. 6 (Ed.:
M. I. Page), Elsevier, Amsterdam, 1984, pp. 271 –301.
[5] a) T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003,
125, 12672 –12673; b) T. Okino, S. Nakamura, T. Furukawa, Y.
Takemoto, Org. Lett. 2004, 6, 625 –627; c) Y. Hoashi, T. Yabuta,
Y. Takemoto, Tetrahedron Lett. 2004, 45, 9185 –9188; d) T.
Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am.
Chem. Soc. 2005, 127, 119 –125; e) A. Berkessel, F. Cleemann, S.
Mukherjee, T. N. Mꢂller, J. Lex, Angew. Chem. 2005, 117, 817 –
821; Angew. Chem. Int. Ed. 2005, 44, 807 –811; f) Y. Hoashi, T.
Okino, Y. Takemoto, Angew. Chem. 2005, 117, 4100 –4103;
Angew. Chem. Int. Ed. 2005, 44, 4032 –4035; g) A. Berkessel, F.
Cleemann, S. Mukherjee, Angew. Chem. 2005, 117, 7632 –7635;
Angew. Chem. Int. Ed. 2005, 44, 7466 –7469; h) A. Berkessel, S.
Mukherjee, F. Cleemann, T. N. Mꢂller, J. Lex, Chem. Commun.
2005, 1898 –1900; i) A. P. Dove, R. C. Pratt, B. G. G. Lohmeijer,
R. M. Waymouth, J. L. Hedrick, J. Am. Chem. Soc. 2005, 127,
13798 –13799; j) B. Vakulya, S. Varga, A. Csꢃmpal, T. Soós, Org.
Lett. 2005, 7, 1967 –1969; k) B.-J. Li, L. Jiang, M. Liu, Y.-C.
Chen, L.-S. Ding, Y. Wu, Synlett 2005, 603 –606; l) S. H.
McCooey, S. J. Connon, Angew. Chem. 2005, 117, 6525 –6528;
Angew. Chem. Int. Ed. 2005, 44, 6367 –6370; m) J. Ye, D. J.
Dixon, P. S. Hynes, Chem. Commun. 2005, 4481 –4483; n) D. E.
Fuerst, E. N. Jacobsen, J. Am. Chem. Soc. 2005, 127, 8964 –8965;
o) J. Wang, H. Li, X. Yu, L. Zu, W. Wang, Org. Lett. 2005, 7,
4293 –4296; p) J. Wang, H. Li, W. Duan, L. Zu, W. Wang, Org.
Lett. 2005, 7, 4713 –4716; q) X. Xu, T. Furukawa, T. Okino, H.
Miyabe, Y. Takemoto, Chem. Eur. J. 2006, 12, 466 –476.
1
0.0200 g/2.0 mL, chloroform); H NMR (400 MHz, CDCl3): d = 9.47
(1H, s), 7.42 (2H, t, J = 7.3 Hz), 7.34 (1H, t, J = 7.3 Hz), 7.24 (2H, d,
J = 7.3 Hz), 4.57 (1H, dd, J = 3.3, 12.0 Hz), 4.19 (1H, dd, J = 10.6,
12.0 Hz), 3.17 (1H, m), 1.48 (3H, s), 0.81 ppm (3H, d, J = 7.0 Hz);
13C NMR (100 MHz, CDCl3): d = 200.6, 137.4, 129.4, 128.2, 127.4,
78.8, 55.9, 37.1, 14.6, 13.2 ppm; IR (neat): n˜ = 3060 (w), 2981 (m), 2819
(w), 2719 (w), 1722 (s), 1533 (s), 1496 (m), 1446 (m), 1377 (s), 763 (m),
702 (m); HRMS (ESI): calcd for [C12H15NO3+NH4]+: 239.1396;
found: 239.1402.
[6] For reviews concerning asymmetric catalysis by chiral thioureas
(including tertiary amine thiourea derivatives), see: a) S. J.
Connon, Chem. Eur. J. 2006, 12, 5418 –5427; b) M. S. Taylor,
E. N. Jacobsen, Angew. Chem. 2006, 118, 1550 –1573; Angew.
Chem. Int. Ed. 2006, 45, 1520 –1543; c) P. R. Schreiner, Chem.
Soc. Rev. 2003, 32, 289 –296; d) Y. Takemoto, Org. Biomol.
Chem. 2005, 3, 4299 –4306.
Received: June 2, 2006
Published online: August 28, 2006
Keywords: amines · asymmetric catalysis · conjugate addition ·
.
organocatalysis
Angew. Chem. Int. Ed. 2006, 45, 6366 –6370
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim