Organometallics
COMMUNICATION
of the 285 nm band of 4 (10ꢀ5 M/L) during irradiation (Figure B),
and a CIF file giving crystallographic data for 4. This material is
’ ACKNOWLEDGMENT
This work was supported by the Welch Foundation, Houston,
TX (Grant AH-0546), and the NIH-MARC U-STAR program.
’ REFERENCES
(1) (a) Skotheim, T. A. Handbook of Conductive Polymers; Marcel
Dekker: New York, 1986; Vols. 1 and 2. (b) Bredas, J. L.; Silbey, R.
Conjugated Polymers: Kluwer Academic: Dordrecht, The Netherlands,
1991. (c) Pitman, C. U.; Carraher, C. E.; Zeldin, M.; Sheats, J. E.,
Culbertson, B. M. In Metal Containing Polymeric Materials; Plenum: New
York, 1996.
(2) (a) Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359. (b)
West, R. In The Chemistry of Organic Silicon Compounds; Patai, S.,
Rappoport, Z., Eds.; Wiley: Chichester, U.K., 2001; Vol. 3, pp 541ꢀ
564. (c) Jones, R. G.; Ando, W.; Chojnowski, J. Silicon-Containing
Polymers; Kluwer Academic: Dordrecht, The Netherlands, 2000.
(3) (a) Trefonas, P.; West, R. J. Polym. Sci., Polym. Chem. Ed. 1985,
23, 2099. (b) Jurkschat, K.; Mehring, M. In The Chemistry of Organic
Germanium, Tin and Lead Compounds; Rappoport, Z., Ed.; Wiley:
Chichester, U.K., 2002; pp 1543ꢀ1651. (c) Reichl, J. A.; Popoff,
C. M.; Gallagher, L. A.; Remsen, E. E.; Berry, D. H. J. Am. Chem. Soc.
1996, 118, 9430. (d) Mochida, K.; Chiba, H. J. Organomet. Chem. 1994,
473, 45.
(4) (a) Sita, L. R. Adv. Organomet. Chem. 1995, 38, 189. (b) Sharma,
H. K.; Pannell, K. H. In Tin Chemistry: Fundamentals, Frontiers and
Applications; Wiley: Chichester, U.K., 2008; pp 376ꢀ391. (c) Imori, T.;
Lu, V.; Cai, H.; Tilley, T. D. J. Am. Chem. Soc. 1995, 117, 9931.
(5) (a) Gilman, H.; Inoue, S. J. Org. Chem. 1964, 29, 3418. (b)
Wojnowski, W.; Hurt, C. J.; West, R. J. Organomet. Chem. 1977, 124, 271.
(c) Wojnowski, W.; West, R. J. Organomet. Chem. 1977, 140, 133. (d)
Chernyavskii, A. I.; Larkin, D. Yu.; Chernyavskaya, N. A. J. Organomet.
Chem. 2003, 679, 17. (e) Maxka, J.; Huang, L. M.; West, R. Organome-
tallics 1991, 10, 656. (f) Oka, K.; Nakao, R.; Takeyama, T.; Hiraki, K.
Chem. Express 1987, 2, 699. (g) Wallner, A.; Wagner, H.; Baumgartner,
J.; Marschner, C.; Rohm, H. W.; K€ockerling, M.; Krempner, C.
Organometallics 2008, 27, 5221.
(6) (a) Bulten, E. J.; Noltes, J. G. J. Organomet. Chem. 1969, 16, P8.
(b) Okano, M.; Mochida, K. Chem. Lett. 1990, 701. (c) Amadoruge,
M. L.; Gadinier, J. R.; Weinert, C. S. Organometallics 2008, 27, 3753. (d)
Weinert, C. S. Dalton Trans. 2009, 1691. (e) Samanamu, C. R.;
Amadoruge, M. L.; Yoder, C. H.; Golen, J. A.; Moore, C. E.; Rheingold,
A. L.; Materer, N. F.; Weinert, C. S. Organometallics 2011, 30, 1046.
(7) Adams, S.; Dr€ager, M. Angew. Chem., Int. Ed. Engl. 1987,
26, 1255.
(8) (a) Davies, A. G.; Osei-Kissi, D. K. J. Organomet. Chem. 1994,
474, C8. (b) Mathiasch, B. Inorg. Nucl. Chem. Lett. 1977, 13, 13. (c)
Gross, L. W.; Moser, R.; Neumann, W. P.; Karl, H. Tetrahedron Lett.
1982, 23, 635.
(9) (a) Khan, A.; Gossage, R. A.; Foucher, D. A. Can. J. Chem. 2010,
88, 1046. (b) Adams, S.; Dr€ager, M. J. Organomet. Chem. 1985, 288, 295.
(10) Sita, L. R. Organometallics 1992, 11, 1442. (b) Sita, L. R.; Terry,
K. W.; Shibata, K. J. Am. Chem. Soc. 1995, 117, 8049.
(11) Englich, U.; Hermann, U.; Prass, I.; Schollmeier, T.; Ruhlandt-
Senge, K.; Uhlig, F. J. Organomet. Chem. 2002, 646, 271.
(12) (a) Kandii, S. A.; Allred, A. L. J. Chem. Soc. Inorg. Phys. Theor.
1970, 2987. (b) Girbasova, N. V.; Bogoradovskii, E. T.; Zavgordnii, V. S.;
Petrov, A. A. Zh. Obshch. Khim. 1986, 56, 2753.
Figure 3. Photchemical irradiation of (a) 4 for ∼10 min time periods
using a 350 nm lamp in a quartz cell and (b) 3 for ∼10 min time periods
using a 254 nm lamp in a quartz cell.
The UV/vis spectrum of 4 in CH3OH exhibits two major
absorptions at 284 (ε = 1.0 ꢁ 105 Mꢀ1 cmꢀ1) and 223 (ε = 1.4 ꢁ
105 Mꢀ1 cmꢀ1) nm, respectively, and that of the distannane 2
exhibits a single absorbance at 232 nm. Taking advantage of this
data, if the photochemical irradiation of 4 is performed using a
350 nm wavelength lamp, only the formation of 2 is observed
(Figure 3a). Changing the irradiation lamp to a 254 nm source
results in the continuation of the overall process observed with
the mercury lamp and the transformation 2 f 3 may be observed
(Figure 3b). Continued irradiation of 3 leads, inter alia, to the
formation of isobutylene, CH2dCMe2, and SnCl2.
A further important point of interest with respect to the
solvent variation for the reaction of SnCl4 and tBuMgCl is that
the photochemical transformation 4 f 2 is much more rapid in
THF than in methanol (Figure B in the Supporting In-
formation), and indeed ordinary laboratory light can effectively
perform the transformation in Pyrex glassware, thus presenting a
secondary rationale for the absence of 4 in the THF reaction
products; however, in a single experiment we could not observe
t
the formation of 4 when the reaction between BuMgCl and
SnCl4 (in only THF) was performed in the dark. Studies on the
photochemistry of Cl(tBu2Sn)nCl and related compounds, in-
cluding trapping of the expected stannylene, [tBu2Sn], are
continuing.
’ ASSOCIATED CONTENT
(13) Sharma, H. K.; Arias-Ugarte, R.; Metta-Magana, A. J.; Pannell,
K. H. Angew. Chem., Int. Ed. 2009, 48, 6309.
(14) (a) Darensbourg, M. Y. Prog. Inorg. Chem. 1985, 33, 221. (b)
Pannell, K. H.; Jackson, D. J. Am. Chem. Soc. 1976, 98, 4443. (c) Nitay,
S
Supporting Information. Text giving experimental pro-
b
cedures, figures detailing the photolysis of 4 in a quartz tube
monitored by 119Sn NMR spectra (Figure A) and disappearance
4503
dx.doi.org/10.1021/om200548s |Organometallics 2011, 30, 4501–4504