Scheme 1
Table 1. Generation of Allyl Anion and Addition to
Benzaldehyde
entry
solvent
base
eq
1H NMR yield (%)
1
2
3
4
5
6
7
THF
THF
THF
THF
THF
THF
Ether
s-BuLi/TMEDA
s-BuLi
n-BuLi
t-BuLi
s-BuLi
1.1
1.1
1.1
1.1
1.0
1.2
1.1
59
70 (65)c
a
b
65
67
20
organosilicon reagent acts as one component to react with
at least one other component through new C-C or C-X
bond formation. By carrying out the Pd-catalyzed cross-
coupling in the final step to introduce one more component,
the organosilicon reagent would provide at least two reaction
sites for new bond formation, thus securing a multicomponent
synthesis.
s-BuLi
s-BuLi
a Multiple products: n-BuCH(OH)Ph and n-BuSi(Me)2CH2CHdCH2.
b Main product was t-BuCH(OH)Ph. c Isolated yield by flash chromatog-
raphy over Florisil.
Homoallylic alcohols of the common structure 1 (Scheme
1) are important intermediates in organic synthesis8 and
frequently appear in natural products and bioactive com-
pounds.9 Most literature preparations are based upon two-
component approaches10 and have certain drawbacks to serve
as a general and diversity-oriented synthesis. A three-
component synthesis of 1 by using allyldiindium 4 (Scheme
1; M1, M2 ) In)11 is attractive because of easy access to
various carbonyl compounds and aryl/vinyl halides. Its
drawback is the poor stereochemical control of the resulting
double bond and the lack of flexibility due to the instability
of the carbon-indium bond. Later, Hiyama and co-workers
reported that the synthesis of the corresponding alkyl ether
of 1 could be achieved by a two-step sequence that involves
the allylation of acetals with 1-silyl-1-boryl-2-alkenes and
the subsequent Pd-catalyzed cross-coupling of the resulting
vinylborate.12 Denmark’s recent synthesis of (Z)-isomers of
1 by a RCM and Pd-catalyzed cross-coupling sequence
represents another interesting example.13 Inspired by these
works and the synthetic potential of the synthesis of
vinylsilane from organosilicon reagents, we thought that if
a highly regio- and stereoselective γ-addition14 of silylal-
lylmetal 5 to carbonyl compounds could be achieved, a three-
component diversity-oriented synthesis of homoallylic al-
cohols 1 could be realized (Scheme 1). Treatment of 6 with
a base to generate 5 as an equivalent to allyldimetal 4
provides the first reaction site to carry out the synthesis of
vinylsilane. By taking advantage of the high stability of the
Si-C bond, we expected the sequence could be performed
stepwise as well as in a one-pot fashion.
(8) (a) Tiecco, M.; Testaferri, l.; Santi, C.; Tomassini, C.; Marini, F.;
Bagnoli, L.; Temperini, A. Chem.- Eur. J. 2002, 8, 1118. (b) Merlic, C.
A.; Aldrich, C. C.; Albaneze-Walker, J.; Saghatelian, A. J. Am. Chem. Soc.
2000, 122, 3224. (c) Bennett, F.; Bedford, S. B.; Bell, K. E.; Fenton, G.;
Knight, D. W.; Shaw, D. Tetrahedron Lett. 1992, 33, 6507. (d) Kang, S.
H.; Hwang, T. S.; Kim, W. J.; Lim, J. K. Tetrahedron Lett. 1991, 32, 4015.
(e) Kang, S. H.; Hwang, T. S.; Kim, W. J.; Lim, J. K. Tetrahedron Lett.
1990, 31, 5917. (f) Mori, K.; Takaishi, H. Tetrahedron 1989, 45, 1639.
(9) (a) Tatsuta, K.; Takano, S.; Sato, T.; Nakano, S. Chem. Lett. 2001,
172. (b) Materal-Saadi, M. S. Phosphorus, Sulfur Silicon Relat. Elem. 2000,
164, 269. (c) Schmidt, E. W.; Faulkner, D. J. Tetrahedron 1998, 54, 3043.
(10) (I) Wittig: (a) Boesen, T.; Feeder, N.; Eastgate, M. D.; Fox, D. J.;
Medlock, J. A.; Tyzack, C. R.; Warren, S. J. Chem. Soc., Perkin Trans. 1
2001, 118. (b) Enholm, E. J.; Satici, H.; Prasad, G. J. Org. Chem. 1990,
55, 324. (c) Le Bigot, Y.; El Gharbi, R.; Delmas, M.; Gaset, A.; Cheik-
Rouhou, F. Synth. Commun. 1986, 16, 1617. (d) Maryanoff, B. E.; Reitz,
A. B.; Duhl-Emswiler, B. A. J. Am. Chem. Soc. 1985, 107, 217. (e) Meyers,
A. I.; Durandetta, J. L.; Munavu, R. J. Org. Chem. 1975, 40, 2025. (f)
Hands, A. R.; Mercer, A. J. H. J. Chem. Soc. C 1968, 2448. (II) Addition
to carbonyls: see examples and references in (a) Lautens, M.; Maddess,
M. L.; Sauer, E. L.; Ouellet, S. G. Org. Lett. 2002, 4, 83. (b) Lautens, M.;
Ouellet, S. G.; Raeppel, S. Angew. Chem., Int. Ed. 2000, 39, 4079. (c)
Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 1195.
(d) Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura, Y.; Mita, T.;
Hatanaka, Y.; Yokoyama, M. J. Org. Chem. 1984, 49, 3904. (e) Hayashi,
T.; Kumada, M. J. Org. Chem. 1983, 48, 281. (f) Parnes, Z. N.; Bolestova,
G. I. Synthesis 1984, 991. (g) Loh, T.-P.; Tan, K.-T.; Yang, J.-Y.; Xiang,
C.-L. Tetrahedron Lett. 2001, 42, 8701. (III) Ene-reaction: (a) Salomon,
M. F.; Pardo, S. M.; Salomon, R. G. J. Am. Chem. Soc. 1984, 106, 3797.
(b) Gill, G. B.; Hj Idris, M. S. Tetrahedron 1993, 49, 219. (c) Beak, P.;
Song, Z.; Resek, J. E. J. Org. Chem. 1992, 57, 944. (IV) Allyl transfer: (a)
Loh, T. P.; Tan, K. T.; Hu, Q. Y. Angew. Chem., Int. Ed. 2001, 40, 2921.
(b) Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S. J. Am. Chem.
Soc. 1998, 120, 6609. (V) Cross-metathesis: Barrett, A. G. M.; Beall, J.
C.; Gibson, V. C.; Giles, M. R.; Walker, G. L. P. Chem. Commun. 1996,
2229. (VI) Cross-coupling: Nicolaou, K. C.; Winssinger, N.; Pastor, J.;
Murphy, F. Angew. Chem., Int. Ed. 1998, 37, 2534. (VII) Heck reaction:
Dyker, G.; Markwitz, H. Synthesis 1998, 1750. (VIII) Miscellaneous
synthesis: (a) Trost, B. M.; Quayle, P. J. Am. Chem. Soc. 1984, 106, 2469.
Gupta, A.; Vankar, Y. D. Tetrahedron Lett. 1999, 40, 1369. (b) Ihara, M.;
Suzuki, S.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K. Tetrahedron 1995,
51, 9873. (c) Maleczka, R. E.; Geng, F. Org. Lett. 1999, 1, 1111.
(11) Hirashita, T.; Yamamura, H.; Kawai, M.; Araki, S. Chem. Commun.
2001, 387.
Allylsilane 6 was prepared by silylation of 2-propanol with
commercially available allylchlorodimethylsilane. We first
tested the generation of 5 from 6 with LDA15 or Schlosser’s
base13d,16 by following literature procedure in ether or THF.
Unfortunately, its addition to PhCHO only afforded 7 in less
1
than 50% yield when determined by using H NMR of the
crude with toluene as an internal standard. This prompted
us to test other bases. We were pleased to find that when 6
was treated with 1.1 equiv of s-BuLi/TMEDA complex in
THF for 1 h at - 78 °C, followed by reaction with PhCHO
for 1 h at - 78 °C, 7 was obtained in 59% yield (entry 1,
Table 1). The yield was further improved to 70% when
s-BuLi was used alone (entry 2, Table 1). With n-BuLi as
base, nucleophilic replacement of the isopropoxy group on
(12) Shimizu, M.; Kitagawa, H.; Kurahashi, T.; Hiyama, T. Angew.
Chem., Int. Ed. 2001, 40, 4283.
(13) Denmark, S. E.; Yang, S. M. Org. Lett. 2001, 3, 1749.
3092
Org. Lett., Vol. 6, No. 18, 2004