Communications
[3] a) G. Stork, R. Terrell, J. Szmuszkovicz, J. Am. Chem. Soc. 1954,
[10] Imine 13a was readily prepared by a procedure based on those
described by: T. N. Van, N. De Kimpe, Tetrahedron 2000, 56,
7969; B. G. Davis, M. A. T. Maughan, T. M. Chapman, R.
Villard, S. Courtney, Org. Lett. 2002, 4, 103; for optimum results,
13a is stored as the corresponding HCl salt 5a to minimize
oxidation by air.
76, 2029; b) G. Wittig, H. D. Frommeld, P. Suchanek, Angew.
Chem. 1963, 75, 978; Angew. Chem. Int. Ed. Engl. 1963, 2, 683;
c) G. Stork, S. R. Dowd, J. Am. Chem. Soc. 1963, 85, 2178;
d) E. J. Corey, D. Enders, Tetrahedron Lett. 1976, 3; e) D.
Seebach, J. Golinski, Helv. Chim. Acta 1981, 64, 1413; f) see
also: P. W. Hickmott in The Chemistry of Enamines (Ed.: Z.
Rappoport), Wiley, Chichester, 1994; A. Job, C. F. Janeck, W.
Bettray, R. Peters, D. Enders, Tetrahedron 2002, 58, 2253, and
references therein.
[11] The use of heterocuprates or fewer than 1.5 equivalents of the
homocuprate gave inferior results.
[12] The isolation and purification of 10a prior to its reduction is not
required, but is recommended for optimum results.
[13] The product of a boatlike transition state has not been observed.
[14] The use of the corresponding O-TMS derivative of 10e was
found to be optimal; for a review, see: D. Enders, U. Reinhold,
Tetrahedron: Asymmetry 1997, 8, 1895.
[4] For representative reports, see: a) G. Stork, A. Brizzolara, H.
Landesman, J. Szmuszkovicz, R. Terrell, J. Am. Chem. Soc. 1963,
85, 207; b) J. B. Hendrickson, R. K. Boeckman, Jr., J. Am. Chem.
Soc. 1971, 93, 1307; c) M. Pfau, G. Revial, A. Guingant, J.
dꢀAngelo, J. Am. Chem. Soc. 1985, 107, 273; d) M. Pfau, A.
Tomas, S. Lim, G. Revial, J. Org. Chem. 1995, 60, 1143; e) G. U.
Gunawardena, A. M. Arif, F. G. West, J. Am. Chem. Soc. 1997,
119, 2066; f) P. Benovsky, G. A. Stephenson, J. R. Stille, J. Am.
Chem. Soc. 1998, 120, 2493; g) I. Jabin, G. Revial, N. Monnier-
Benoit, P. Netchitailo, J. Org. Chem. 2001, 66, 256; h) M.
Nakamura, T. Hatakeyama, K. Hara, E. Nakamura, J. Am.
Chem. Soc. 2003, 125, 6362; i) H. M. Peltier, J. A. Ellman, J. Org.
Chem. 2005, 70, 7342.
[15] Competitive hydrolysis of the initial 1,4-addition product occurs
during workup.
[16] a) B. List, Tetrahedron 2002, 58, 5573; b) P. I. Dalko, L. Moisan,
Angew. Chem. 2004, 116, 5248; Angew. Chem. Int. Ed. 2004, 43,
5138; c) A. Berkessel, H. Gröger, Asymmetric Organocatalysis,
Wiley-VCH, Weinheim, 2005; d) G. Lelais, D. W. C. MacMillan,
Aldrichimica Acta 2006, 39, 79; e) M. S. Taylor, E. N. Jacobsen,
Angew. Chem. 2006, 118, 1550; Angew. Chem. Int. Ed. 2006, 45,
1520; f) D. Enders, M. R. M. Hꢁttl, C. Grondal, G. Raabe,
Nature 2006, 441, 861.
[17] The suggested mode of catalysis is based on prior reports on
related transformations (see reference [16]).
[18] The use of TFE–water as the solvent mixture led to products
(Table 2) with 5–10% ee.
[5] a) D. Seebach, M. Missbach, G. Calderari, M. Eberle, J. Am.
Chem. Soc. 1990, 112, 7625; b) for related reviews, see: J. P. A.
Harrity, O. Provoost, Org. Biomol. Chem. 2005, 3, 1349; R. P.
Hsung, A. V. Kurdyumov, N. Sydorenko, Eur. J. Org. Chem.
2005, 23.
[6] M. Movassaghi, D. K. Hunt, M. Tjandra, J. Am. Chem. Soc. 2006,
128, 8126.
[19] A variety of modulators of cholinergic activity contain cyclic
amines or amino alcohols as rigid acetylcholine analogues; see:
a) J. W. Clader, Y. Wang, Curr. Pharm. Design 2005, 11, 3353;
b) M. G. P. Buffat, Tetrahedron 2004, 60, 1701; c) K. J. Broadley,
D. R. Kelly, Molecules 2001, 6, 142.
[20] For substrate-controlled diastereoselective conjugate addition,
see: a) B. Breit, P. Demel in Modern Organocopper Chemistry
(Ed.: N. Krause), Wiley-VCH, Weinheim, 2002, pp. 188 – 223;
b) J. Leonard, E. Dꢂez-Barra, S. Merino, Eur. J. Org. Chem. 1998,
2051.
[7] For isolation reports, see: a) S. V. Binns, P. J. Dustan, G. B. Guise,
G. M. Holder, A. F. Hollis, R. S. McCredie, J. T. Pinhey, R. H.
Prager, M. Rasmussen, E. Ritchie, W. C. Taylor, Aust. J. Chem.
1965, 18, 569; b) L. N. Mander, R. H. Prager, M. Rasmussen, E.
Ritchie, W. C. Taylor, Aust. J. Chem. 1967, 20, 1473.
[8] N. Krause, Modern Organocopper Chemistry, Wiley-VCH,
Weinheim, 2002.
[9] See Supporting Information for details.
568
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 565 –568