C O M M U N I C A T I O N S
Scheme 3
and (5′′′R, 6′′′S), respectively (enantiomeric to the structures
depicted in Scheme 1).
In summary, we have completed the first total synthesis of (+)-
dragmacidin F (3), establishing the absolute configuration of this
biologically important marine alkaloid and suggesting the absolute
configuration of the related dragmacidins D and E (1 and 2). Our
efficient and enantiospecific approach (19 steps from 10) relies on
a number of key steps. Specifically, a novel catalytic reductive
isomerization of lactone 11, an oxidative heteroarene/olefin cy-
clization (8 f 7), a highly selective Suzuki coupling reaction (4+16
f 17), and an unprecedented late-stage Neber rearrangement
sequence (19 f 20)9c provide access to this interesting natural
product.
Acknowledgment. We are grateful to the NIH-NIGMS (R01
GM65961-01), DOD (NDSEG graduate fellowship to N.K.G.), and
Eli Lilly (predoctoral fellowship to D.D.C.) for generous financial
support. The Dervan lab is acknowledged for helpful discussions
and the generous use of instrumentation. We also thank Drs. R.
Riccio and A. Casapullo for an authentic sample of (-)-dragmacidin
F.
constructed the dragmacidin F framework (i.e., 17) by fusion of
the pyrrole and alkoxypyrazine subunits of 4 and 16, while leaving
the indolyl bromide of 16 and, in turn, 17 intact.
Having successfully prepared the desired carbon skeleton of
dragmacidin F, we began the final stages of the synthesis. Selective
deprotection of silyl ether 17 and oxidation with Dess-Martin
periodinane produced ketone 18 (Scheme 4). We anticipated that
the introduction of an amino group R to the ketone would allow
for eventual elaboration to the aminoimidazole moiety. To this end,
a number of transformations involving enolate or enol ether
derivatives of 18 were attempted, none of which were successful.
With limited options remaining, we became interested in the
potential application of a Neber rearrangement as a solution to this
obstacle.9 Thus, conversion of ketone 18 to tosyloxime 19, followed
by sequential treatment with (i) KOH, (ii) HCl, and (iii) K2CO3
produced amino ketone 20 as a single regio- and stereochemical
isomer in excellent yield.10 Moreover, under our optimized reaction
conditions, both the tosyl and SEM protecting groups were
quantitatively removed from the corresponding heterocycles. Fi-
nally, liberation of the 3° hydroxyl and pyrazinone functionalities
by exposure of bis-ether 20 to TMSI, followed by treatment of the
penultimate amino ketone with cyanamide and aqueous NaOH
produced (+)-dragmacidin F (3).10
Supporting Information Available: Experimental details. This
References
(1) (a) Wright, A. E.; Pomponi, S. A.; Cross, S. S.; McCarthy, P. J. Org.
Chem. 1992, 57, 4772-4775. (b) Capon, R. J.; Rooney, F.; Murray, L.
M.; Collins, E.; Sim, A. T. R.; Rostas, J. A. P.; Butler, M. S.; Carroll, A.
R. J. Nat. Prod. 1998, 61, 660-662. (c) Cutignano, A.; Bifulco, G.; Bruno,
I.; Casapullo, A.; Gomez-Paloma, L.; Riccio, R. Tetrahedron 2000, 56,
3743-3748 and references therein.
(2) For synthetic work aimed toward the piperazine-containing dragmacidins,
see: (a) Jiang, B.; Smallheer, J. M.; Amaral-Ly, C.; Wuonola, M. A. J.
Org. Chem. 1994, 59, 6823-6827. (b) Whitlock, C. R.; Cava, M. P.
Tetrahedron Lett. 1994, 35, 371-374. (c) Kawasaki, T.; Enoki, H.;
Matsumura, K.; Ohyama, M.; Inagawa, M.; Sakamoto, M. Org. Lett. 2000,
2, 3027-3029. (d) Miyake, F. Y.; Yakushijin, K.; Horne, D. A. Org. Lett.
2000, 2, 3185-3187. (e) Yang, C.-G.; Wang, J.; Tang, X.-X.; Jiang, B.
Tetrahedron: Asymmetry 2002, 13, 383-394. (f) Kawasaki, T.; Ohno,
K.; Enoki, H.; Umemoto, Y.; Sakamoto, M. Tetrahedron Lett. 2002, 43,
4245-4248. For studies targeting dragmacidins D, E, or F, see: (g) Jiang,
B.; Gu, X.-H. Bioorg. Med. Chem. 2000, 8, 363-371. (h) Jiang, B.; Gu,
X.-H. Heterocycles 2000, 53, 1559-1568. (i) Yang, C.-G.; Wang, J.; Jiang,
B. Tetrahedron Lett. 2002, 43, 1063-1066. (j) Miyake, F. Y.; Yakushijin,
K.; Horne, D. A. Org. Lett. 2002, 4, 941-943. (k) Yang, C.-G.; Liu, G.;
Jiang, B. J. Org. Chem. 2002, 67, 9392-9396.
Scheme 4
(3) Garg, N. K.; Sarpong, R.; Stoltz, B. M. J. Am. Chem. Soc. 2002, 124,
13179-13184.
(4) (a) Stoltz, B. M. Chem. Lett. 2004, 33, 362-367 and references therein.
(b) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. M. Angew.
Chem., Int. Ed. 2003, 42, 2892-2895. (c) Ferreira, E. M.; Stoltz, B. M.
J. Am. Chem. Soc. 2003, 125, 9578-9579.
(5) (a) Philippe, M.; Sepulchre, A. M.; Gero, S. D.; Loibner, H.; Streicher,
W.; Stutz, P. J. Antibiot. 1982, 35, 1507-1512. (b) Manthey, M. K.;
Gonza´lez-Bello, C.; Abell, C. J. Chem. Soc., Perkin Trans. 1 1997, 5,
625-628.
(6) Preliminary mechanistic studies suggest that a Pd-catalyzed π-allyl
reduction is not operative.
(7) (a) Under optimized conditions,7b intramolecular Heck cyclization of
related 3-bromopyrrole derivative i resulted in competitive production of
undesired product ii.10b (b) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc.
2001, 123, 6989-7000.
Synthetic dragmacidin F was spectroscopically identical (1H
NMR, 13C NMR, IR, UV, HPLC) to the natural product1c with the
(8) Gilow, H. M.; Hong, Y. H.; Millirons, P. L.; Snyder, R. C.; Casteel, W.
J., Jr. J. Heterocycl. Chem. 1986, 23, 1475-1480.
(9) (a) Neber, P. W.; Friedolsheim, A. Justus Liebigs Ann. Chem. 1926, 449,
109-134. (b) Ooi, T.; Takahashi, M.; Doda, K.; Maruoka, K. J. Am. Chem.
Soc. 2002, 124, 7640-7641. (c) To the best of our knowledge, the Neber
rearrangement has not previously been carried out successfully in the
context of natural product total synthesis.
(10) (a) Purified by reversed-phase chromatography using trifluoroacetic acid
in the eluent. (b) See Supporting Information for details.
(11) Dragmacidin numbering convention, see ref 1.
exception of the sign of rotation (natural: [R]25 -159° (c 0.4,
D
MeOH); synthetic: [R]23 +146° (c 0.45, MeOH)).10b Thus, our
D
synthesis from (-)-quinic acid (9) establishes that the absolute
configuration of natural dragmacidin F is (4′′S, 6′′S, 6′′′S).11 On
the basis of the hypothesis that dragmacidins D, E, and F are
biosynthetically related,1,3 we propose that the absolute stereo-
chemical configurations of natural dragmacidins D and E are (6′′′S)
JA046695B
9
J. AM. CHEM. SOC. VOL. 126, NO. 31, 2004 9553