M. T. Barros et al. / Tetrahedron Letters 43 (2002) 4329–4331
4331
(Fig. 1). This indicated that these aziridines were
regioselectively opened and that the amine function was
then lost to produce a new enone. This is the reverse
equivalent to the aziridine formation reaction. Nor-
mally, ring opening produces vicinally bifunctional
compounds. Further studies are required in order to
determine the scope of this reaction.
7. (a) Johnson, C. R.; Adams, J. P.; Braun, M. P.;
Senanayake, C. B. W.; Wovkulich, P. M.; Uskokovic, M.
R. Tetrahedron Lett. 1992, 33, 917; (b) Jonhson, C. R.;
Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.;
Wovkulich, P. M.; Uskokovic, M. R. Tetrahedron Lett.
1992, 33, 919.
8. (a) Barros, M. T.; Maycock, C. D.; Ventura, M. R.
Tetrahedron Lett. 1999, 40, 557; (b) Barros, M. T.; May-
cock, C. D.; Ventura, M. R. Chem. Eur. J. 2000, 6, 3991;
(c) Barros, M. T.; Maycock, C. D.; Ventura, M. R. J.
Chem. Soc., Perkin Trans. 1 2001, 166.
9. All reagents were dried carefully before use. Potassium
carbonate could be used instead of cesium carbonate in
some cases.
10. Ley, S. V.; Middleton, B. J. Chem. Soc., Chem. Commun.
1998, 1995.
The aziridination method described afforded very good
yields of easily purified products using only a slight
excess of amine. High stereoselectivity was observed
with a chiral substrate. Oxoazabicycloalkanes were
available by this method and not by the classical
Gabriel–Cromwell procedure. Using a chiral amine it
was possible to produce chiral, easily separable aziridi-
nes from achiral iodocycloenones. This method was
also applicable to acyclic substrates, producing the
same products in similar or higher yields than those
previously described in the literature. The scope of this
reaction appears to be large both for the enone and
amine. These previously unknown 2-oxoazabicycloalka-
nes undergo novel aziridine ring-opening reactions
which are under study.
11. All compounds afforded spectral data consistent with the
structure proposed. NMR data for representative com-
pounds (assignments for 13C spectra supported by DEPT
experiments): Compound 4: 13C NMR (CDCl3), 75 MHz:
l 212.0 (CꢀO); 138.1 (quaternary Ar); 128.4, 127.6, 127.2
(Ar); 61.4 (C
C-5). Compound 5: 13C NMR (CDCl3), 75 MHz: l 212.0
(CꢀO); 134.2 (CH2CHꢀCH2); 116.9 (CH2CHꢀCH2); 60.3
(C
6 H2Ph); 46.9, 46.1 (C-2, C-3); 32.8, 24.0 (C-4,
6
6
6
H2CHꢀCH2); 46.8, 45.9 (C-2, C-3); 32.8, 24.0 (C-4,
Acknowledgements
C-5). Compound 8: 13C NMR (CDCl3), 75 MHz: l 207.6
(CꢀO); 138.4 (quaternary Ar); 128.4, 127.5, 127.2 (Ar);
63.3 (C
(C-4, C-5). Compound 9: 13C NMR (CDCl3), 75 MHz: l
207.5 (CꢀO); 134.5 (CH2CHꢀCH2); 116.6 (CH2CHꢀCH2);
62.1 (C
6 H2Ph); 46.3, 43.8 (C-2, C-3); 37.0 (C-6); 23.2, 18.8
We thank Fundac¸a˜o para a Cieˆncia e a Tecnologia for
generous financial support and a grant to M.R.V.
6
6
6
H2CHꢀCH2); 46.0, 43.6 (C-2, C-3); 36.9 (C-6);
23.2, 18.8 (C-4, C-5). Compound 12: 13C NMR (CDCl3),
75 MHz: l 212.1 (CꢀO); 138.6 (quaternary Ar); 128.4,
References
127.5, 127.1 (Ar); 64.0 (C6 H2Ph); 51.0, 44.8 (C-2, C-3);
1. For reviews on aziridines see: (a) Osborn, H. M. I.;
Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693; (b)
Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599;
(c) Atkinson, R. S. Tetrahedron 1999, 55, 1519.
2. Jones, R. J.; Rapoport, H. J. Org. Chem. 1990, 55, 1144.
3. (a) Prostenik, M.; Salzman, N. P.; Carter, H. E. J. Am.
Chem. Soc. 1955, 77, 1856; (b) Harada, K.; Nakamura, I.
J. Chem. Soc., Chem. Commun. 1978, 522; (c) Cardillo,
G.; Casolari, S.; Gentilucci, L.; Tomasini, C. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1848; (d) Garner, P.;
Dogan, O.; Pillai, S. Tetrahedron Lett. 1994, 35, 1653; (e)
Cromwell, N. H.; Hoeksema, H. J. Am. Chem. Soc. 1949,
71, 708; (f) Cromwell, N. H.; Barker, N. G.; Wankel, R.
A.; Venderhorst, P. J.; Olson, F. W.; Anglin, J. H., Jr. J.
Am. Chem. Soc. 1951, 73, 1044.
41.0 (C-7); 28.3, 24.1, 23.6 (C-4, C-5, C-6). Compound 13:
13C NMR (CDCl3), 75 MHz: l 212.1 (CꢀO); 134.7
(CH2C6 HꢀCH2); 116.2 (CH2CHꢀC6 H2); 62.6 (C6 H2CHꢀ
CH2); 50.8, 44.5 (C-2, C-3); 41.0 (C-7); 28.4, 24.0, 23.5
(C-4, C-5, C-6). Compound 30: 1H NMR (CDCl3), 300
MHz: l 6.50 (1H, s, H-3); 4.64 (1H, d, J=8.9 Hz, H-4);
4.17–4.08 (1H, ddd, J=13.5 Hz, J=8.9 Hz, J=4.8 Hz,
H-5); 3.31 (3H, s, OMe); 3.27 (3H, s, OMe); 2.83 (1H, dd,
J=16.4 Hz, J=4.8 Hz, H-6); 2.55 (1H, dd, J=16.4 Hz,
J=13.4 Hz, H-6); 2.23 (3H, s, OAc); 1.36 (3H, s, Me);
1
1.33 (3H, s, Me). Compound 31: H NMR (CDCl3), 300
MHz: l 7.31 (1H, d, J=1.9 Hz, H-3); 4.49 (1H, dd,
J=8.9 Hz, J=1.9 Hz, H-4); 4.07 (1H, ddd, J=13.8 Hz,
J=9.1 Hz, J=4.8 Hz, H-5); 3.32 (3H, s, OMe); 3.26 (3H,
s, OMe); 2.95 (1H, dd, J=16.6 Hz, J=4.8 Hz, H-6); 2.60
(1H, dd, J=16.6 Hz, J=13.7 Hz, H-6); 1.36 (3H, s, Me);
1.33 (3H, s, Me). 13C NMR (CDCl3), 75 MHz: l 188.6
(CꢀO); 148.7 (C-3); 124.3 (C-2); 100.9, 99.8 (2×C6 OMe);
70.3, 67.4 (C-4, C-5); 48.3, 48.2 (2×OMe); 41.1 (C-6);
17.6, 17.5 (2×Me).
4. Saint-Fuscien, C.; Tarrade, A.; Dauban, P.; Hodd, R.
Tetrahedron Lett. 2000, 41, 6393.
5. Andres, C. J.; Meyers, A. I. Tetrahedron Lett. 1995, 36,
3491.
6. Cardillo, G.; Gentilucci, L.; Tomasini, C.; Castejon-Bor-
das, M. P. V. Tetrahedron: Asymmetry 1996, 7, 7557.