Page 5 of 6
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
631−651.
S.; Fiorenza, M.; Rossini, G. Heteroacylsilanes: Synthesis and
2
For reviews, see: Page, P. C. B.; Klair, S. S.; Rosenthal, S.
Synthetic Potentialities of New Nucleophilic Acylation Agents. J. Org.
Chem. 1985, 50, 130-133; (c) Yamamoto, K.; Hayashi, A.; Suzuki, S.;
Tsuji, J. Preparation of Substituted Benzoyltrimethylsilanes and -
germanes by the Reaction of Benzoyl Chlorides with
Hexamethyldisilane or -digermane in the Presence of Palladium
Complexes as Catalysts. Organometallics, 1987, 6, 974-979. (d) Kraft,
T. E.; Rich, J. D.; McDermott, P. J. Palladium-catalyzed Reductive
Coupling of Aromatic Acid Chlorides with Disilanes. J. Org. Chem.
1990, 55, 5430-5432. (e) Geng, F.; Maleczka Jr., R. E. Synthesis of
Aryl and Alkyl Acylsilanes using Trimethyl(tributylstannyl)silane.
Tetrahedron Lett. 1999, 40, 3113–3114.
Synthesis and Chemistry of Acyl Silanes. Chem. Soc. Rev. 1990, 19,
147-195; (b) Patrocínio, A. F.; Moran, P. J. S. Acylsilanes and Their
Applications in Organic Chemistry. J. Braz. Chem. Soc. 2001, 12,
7−31. (c) Zhang, H.-J.; Priebbenow, D. L.; Bolm, C. Acylsilanes:
Valuable Organo- silicon Reagents in Organic Synthesis. Chem. Soc.
Rev. 2013, 42, 8540−8571.
3
For recent examples of transformations of acylsilanes, see: (a)
Lettan, R. B.; Galliford, C. V.; Woodward, C. C.; Scheidt, K. A. Amide
Enolate Additions to Acylsilanes: in situ Generation of Unusual and
Stereoselective Homoenolate Equivalents. J. Am. Chem. Soc. 2009,
131, 8805–8814. (b) Chen, J.- P.; Ding, C.-H.; Liu, X. L.; Dai, L. X.
Palladium-Catalyzed Regio-, Diastereo-, and Enantioselective Allylic
Alkylation of Acylsilanes with Monosubstituted Allyl Substrates. J.
Am. Chem. Soc. 2010, 132, 15493–15495; (c) Schmink, J. R.; Krska, S.
W. Reversed-Polarity Synthesis of Diaryl Ketones via Palladium-
Catalyzed Cross-Coupling of Acylsilanes. J. Am. Chem. Soc. 2011,
133, 19574–19577. (d) Ito, K.; Tamashima, H.; Iwasawa, N.; Kusama,
H. Photochemically Promoted Transition Metal-Free Cross-Coupling
of Acylsilanes with Organoboronic Esters. J. Am. Chem. Soc. 2011,
133, 3716–3719. (e) Zhang, H.-J.; Becker, P.; Huang, H.; Pirwerdjan,
R.; Pan, F.-F.; Bolm, C. Photochemically Induced Silylacylations of
Alkynes with Acylsilanes. Adv. Synth. Catal. 2012, 354, 2157–2161.
(f) Feng, J.-J.; Oestreich, M. Tertiary 훼-Silyl Alcohols by
Diastereoselective Coupling of 1,3-Dienes and Acylsilanes Initiated by
Enantioselective Copper-Catalyzed Borylation. Angew. Chem. Int. Ed.
2019, 58, 8211–8215. (g) Ye, J.-H.; Quach, L.; Paulisch, T.; Glorius,
F. Visible-Light-Induced, Metal-Free Carbene Insertion into B–H
Bonds between Acylsilanes and Pinacolborane. J. Am. Chem.
Soc.2019, 141, 16227–16231.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
8
Cirriez, V.; Rasson, C.; Riant, O. Synthesis of Acylsilanes by
Copper(I)-Catalyzed Addition of Silicon Nucleophiles onto Acid
Derivatives. Adv. Synth. Catal. 2013, 355, 3137 – 3140.
9
While this manuscript was under review, Fujihara reported a zinc-
catalyzed synthesis of acylsilanes using carboxylic acids and a
silylborane, in which the mixed anhydrides were generated in situ as
the key intermediates: Tatsumi, K.; Tanabe, S.; Tsuji, Y.; Fujihara, T.
Zinc-Catalyzed Synthesis of Acylsilanes Using Carboxylic Acids and
a Silylborane in the Presence of Pivalic Anhydride. Org. Lett. DOI:
10.1021/acs.orglett.9b04151.
10
(a) Seyferth, D.; Weinstein, R. M. High-Yield Acyl Anion
Trapping Reactions: A Synthesis of Acyltrimethylsilanes. J. Am.
Chem. Soc. 1982, 104, 5534–5535. (b) Seyferth, D.; Hui, R. C.; Wang,
W.-L. Direct, Low Temperature, in situ Nucleophilic Aroylation with
Aroyllithium Reagents. J. Org. Chem. 1993, 58, 5843–5845.
11
Wu, X.-F.; Neumann, H.; Beller, M. Palladium-catalyzed
Carbonylative Coupling Reactions of Aryl Iodides with
Hexamethyldisilane (HMDS) to Benzoyl Silanes. Tetrahedron Lett.
2012, 53, 582-584.
4
12 (a) Beller, M.; Wu, X.-F. Transition Metal Catalyed
Carbonylation Reactions: Carbonylative Activation of C-X Bonds,
Springer, Berlin, 2013. (b) Peng, J.-B.; Wu, F.-P.; Wu, X.-F. First-
Row Transition-Metal-Catalyzed Carbonylative Transformations of
Carbon Electrophiles. Chem. Rev. 2019, 119, 2090−2127
For representative examples, see: (a) Brook, A. G.; Duff, J. M.;
Jones, P. F.; Davis, N. R. Synthesis of Silyl and Germyl Ketones. J.
Am. Chem. Soc. 1967, 89, 431-434. (b) Corey, E. J.; Seebach, D.;
Freedman, R. Synthesis of 훼-Silyl Ketones via 1,3-Dithianes. J. Am.
Chem. Soc. 1967, 89, 434-436. (c) Miller, J. A.; Zweifel, G. A
Convenient Synthesis of Acylsilanes via Hydroboration-Oxidation of
Silylacetylenes. Synthesis 1981, 288-289. (d) Katritzky, A. R.; Lang,
H. Novel and Convenient Routes to Functionalized Alkynyl Ketones
from 1-(Benzotriazol-l-yl)propargyl Ethyl Ethers. J. Org. Chem. 1995,
60, 7612-7618. (e) Katritzky, A. R.; Wang, Z.; Lang, H. Convenient
Syntheses of Functionalized Dialkyl Ketones and Alkanoylsilanes: 1-
(Benzotriazol-1-yl)-1-phenoxyalkanes as Alkanoyl Anion Equivalents.
J. Org. Chem. 1996, 61, 7551-7557. (f) Inoue, A.; Kondo, J.;
Shinokubo, H.; Oshima, K. Facile Synthesis of Acylsilanes via Aerobic
Oxidation of gem-Disilylalkylcopper Compounds. J. Am. Chem. Soc.
2001, 123, 11109-11110. (g) Kondo, J.; Shinokubo, H.; Oshima, K.
Oxidation of gem-Borylsilylalkylcoppers to Acylsilanes with Air. Org.
Lett. 2006, 8, 1185–1187. (h) Reddy, G. P.; Reddy, J. S.; Das, S.;
Roisnel, T.; Yadav, J. S.; Chandrasekhar, S.; Grée, R. Synthesis of
Acylsilanes via Nickel-Catalyzed Reactions of 훼-Hydroxyallylsilanes.
Org. Lett. 2013, 15, 1524–1527.
13
(a) Cheng, L.-J.; Mankad, N. P. Cu-Catalyzed
Hydrocarbonylative C–C Coupling of Terminal Alkynes with Alkyl
Iodides. J. Am. Chem. Soc. 2017, 139, 10200-10203. (b) Cheng, L.-J.;
Islam, S. M.; Mankad, N. P. Synthesis of Allylic Alcohols via Cu-
Catalyzed Hydrocarbonylative Coupling of Alkynes with Alkyl
Halides. J. Am. Chem. Soc. 2018, 140, 1159-1164. (c) Cheng, L.-J.;
Mankad, N. P. Cu-Catalyzed Borocarbonylative Coupling of Internal
Alkynes with Unactivated Alkyl Halides: Modular Synthesis of
Tetrasubstituted 훽-Borylenones. Angew. Chem. Int. Ed. 2018, 57,
10328-10332.
14
Zhao, S.; Mankad, N. P. Cu-catalyzed Hydroxymethylation of
Unactivated Alkyl Iodides with CO to Provide One Carbon Extended
Alcohols. Angew. Chem. Int. Ed. 2018, 57, 5867-5870.
15
For recent reviews, see: (a) Fujihara, T.; Semba, K.; Terao, J.;
Tsuji, Y. Regioselective Transformation of Alkynes Catalyzed by a
Copper Hydride or Boryl Copper Species. Catal. Sci. Technol. 2014, 4,
1699-1709. (b) Suginome, M. Copper-Catalyzed Transformations
Using Cu–H, Cu–B, and Cu–Si as Active Catalyst Species. Chem. Rec.
2010, 10, 348-358. (c) Yoshida, H. Borylation of Alkynes under
Base/Coinage Metal Catalysis: Some Recent Developments. ACS
Catal. 2016, 6, 1799-1811. (d) Jordan, A. J.; Lalic, G.; Sadighi, J. P.
Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity.
Chem. Rev. 2016, 116, 8318-8372.
5
(a) Capperucci, A.; Degl’Innocenti, A.; Faggi, C.; Ricci, A.;
Dembech, P.; Seconi, G. Easy One-step General Synthesis of
Acylsilanes. J. Org. Chem. 1988, 53, 3612-3614. (b) Bonini, B. F.;
Comes-Franchini, M.; Mazzanti, G.; Passamonti, U.; Ricci, A.; Zani,
P. Synthesis of Functionalized Acylsilanes from Carboxylic Acid
Chlorides and Silyl-Zinc Cyanocuprates. Synthesis 1995, 92-96.
6 (a) Fleming, I.; Ghosh, U. Synthesis of Acylsilanes from Amides and
Esters, and the Selective Oxidation of 훼-Silyl Alcohols to Aldehydes.
J. Chem. Soc., Perkin Trans. 1 1994, 257- 262. (b) Mattson, A. E.;
Scheidt, K. A. Efficient Synthesis of Acylsilanes Using Morpholine
Amides, Org. Lett. 2004, 6, 4363– 4366.
16
(a) Oestreich, M.; Hartmann, E.; Mewald, M. Activation of the
Si−B Interelement Bond: Mechanism, Catalysis, and Synthesis. Chem.
Rev. 2013, 113, 402-441. (b) Delvos, L. B.; Oestreich, M. In Science
of Synthesis Knowledge Update 2017/1; M. Oestreich, Ed.; Thieme:
Stuttgart, 2017; pp 65–176.
7 (a) Yamamoto, K.; Suzuki, S.; Tsuji, J. Preparation of Substituted
Benzoyltrimethylsilanes by the Palladium-catalyzed Silylation of
Substituted Benzoyl Chlorides with Hexamethyldisilane. Tetrahedron
Lett. 1980, 21, 1653-1656. (b) Ricci, A.; Degl’Innocenti, A.; Chimichi,
17
(a) Chu, C. K.; Liang, Y.; Fu, G. C. Silicon–Carbon Bond
Formation via Nickel-Catalyzed Cross-Coupling of Silicon
ACS Paragon Plus Environment