C O M M U N I C A T I O N S
Table 2. Asymmetric Hydrogenation of Enamine Esters and
our hope that this discovery will provide a practical and efficient
method for the large-scale preparation of â-amino acids and their
derivatives.
Amidesa
time
h
yield
%
ee
%
b
entry
enamine
ligand
solvent
configuration
Acknowledgment. We thank Ms. Lisa DiMichele for assistance
with NMR spectra, Mr. Roy Helmy for LCMS data, and Dr.
Thomas J. Novak for HRMS data.
1
2
3
4
5
1a
1a
1b
1c
1d
1e
3a
3a
3b
3c
3d
I
I
I
I
I
I
II
II
II
II
II
TFE
MeOH
TFE
TFE
TFE
TFE
MeOH
TFE
MeOH
MeOH
MeOH
6
18
11
11
11
24
8
18
8
8
97.6
trace
87.5
85.4c
94.4
90.5
74.6
94.1
82.0
74.3
94.0
96.1
S
95.0
96.1
93.3
95.7
95.6
82.2
96.3
96.0
97.1
S
(-)
R
(-)
(-)
(-)
(+)
(+)
(-)
Supporting Information Available: General procedures for syn-
thesis of enamines and their hydrogenations; physical characterization
data for substrates and products (PDF). This material is available free
6
7
8d
9e
10
11
References
(1) Drey, C. N. In Chemistry and Biochemistry of the Amino Acids; Barrett,
G. C., Ed.; Chapman and Hall: New York, 1985; Chapter 3.
(2) (a) Spzatola, A. F. In Chemistry and Biochemistry of Amino Acids, Peptides
and Proteins; Weinstein, B., Ed.; Marcel Dekker: New York, 1983; Vol.
7, pp 331-333. (b) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (c)
Gademann, K.; Hintermann, T.; Schreiber, J. V. Curr. Med. Chem. 1999,
6, 905.
8
a Reaction conditions: 0.15 mol % [(COD)RhCl]2, 0.3 mol % ligand,
50 °C, 90-100 psig H2. b Assay yield. c Isolated yield. d With 1 mol %
catalyst. e With 0.7 mol % catalyst.
(3) Cardillo, G.; Tomasini, C. Chem. Soc. ReV. 1996, 117-128.
(4) EnantioselectiVe Synthesis of â-Amino Acids; Juaristi, E., Ed.; Wiley-
VCH: New York, 1996.
using only 0.3 mol % catalyst under relatively mild conditions (100
psig H2). Ligand I gave the best results in the hydrogenation of
enamine esters, while ligand II gave the highest rates and
enantioselectivities for the hydrogenation of enamine amides.
Interestingly, this catalytic system exhibited a high sensitivity to
solvent. For hydrogenation of enamine esters, TFE is preferred for
high reactivity and selectivity. In MeOH, however, the reaction
was almost totally inhibited (entry 2 in Table 2). On the other hand,
the hydrogenations of enamine amides gave much higher selectivity
in MeOH than in TFE (entry 8). It is believed that the solvent acidity
plays an important role in the reaction.21
The success of this hydrogenation method despite the lack of a
directing N-acyl group on the substrate begs the question of what
sort of mechanism is operative that gives high rates of reaction
and high enantiofacial selectivity in the Rh-H insertion step.
Mechanistic studies are ongoing and will be reported in due course.
However, preliminary results of deuterium labeling studies suggest
the intriguing possibility that the reaction proceeds through the imine
tautomer, making this reaction mechanistically analogous to â-ke-
toester and -amide hydrogenations.8,22
(5) For the latest review, see: Ma, J.-A. Angew. Chem., Int. Ed. 2003, 42,
4290.
(6) Trost, B. M. Acc. Chem. Res. 2002, 35, 695 and references therein.
(7) Synthesis of Optically ActiVe R-Amino Acids; Williams, R. M., Ed.;
Pergamon Press: New York, 1989.
(8) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley &
Sons: New York, 1994. (b) Catalytic Asymmetric Synthesis; Ojima, I.,
Ed.; Wiley-VCH: New York, 2000.
(9) For example, the classic L-DOPA synthesis: Knowles, W. S. Acc. Chem.
Res. 1983, 16, 106.
(10) (a) You, J.; Drexler, H.; Zhang, S.; Fischer, C. Heller, D. Angew. Chem.,
Int. Ed. 2003, 42, 913. (b) Zhou, Y.-G.; Tang, W.; Wang, W.-B.; Li, W.;
Zhang, X. J. Am. Chem. Soc. 2002, 124, 4952. (c) Tang, W.; Wu, S.;
Zhang, X. J. Am. Chem. Soc. 2003, 125, 9570. (d) For a recent review,
see: Drexler, H.; You, J.; Zhang, S.; Fischer, C.; Baumann, W.;
Spannenberg, A.; Heller, D. Org. Process Res. DeV. 2003, 7, 355.
(11) Abdel-Magid, A. F.; Cohen, J. H.; Maryanoff, C. A. Curr. Med. Chem.
1999, 6, 955.
(12) Cohen, J. H.; Bos, M. E.; Cesco-Cancian, S.; Harris, B. D.; Hortenstine,
J. T.; Justus, M.; Maryanoff, C. A.; Mills, J.; Muller, S.; Roessler, A.;
Scott, L.; Sorgi, K. L.; Villani, F. J., Jr.; Webster, R. R. H.; Weh, C. Org.
Process Res. DeV. 2003, 7, 866.
(13) Ikemoto, N.; Tellers, D. M.; Dreher, S. D.; Liu, J.; Huang, A.; Rivera, N.
R.; Njolito, E.; Hsiao, Y.; McWilliams, J. C.; Williams, J. M.; Armstrong,
J. D., III; Sun, Y.; Mathre, D. J.; Grabowski, E. J. J.; Tillyer, R. D. J.
Am. Chem. Soc. 2004, 126, 3048.
(14) Halpern, J. Science 1982, 217, 401.
(15) First report: Lubell, W. D.; Kitamura, M.; Noyori, R. Tetrahedron:
Asymmetry 1991, 2, 543.
(16) Burk, M. J.; Casy, G.; Johnson, N. B. J. Org. Chem. 1998, 63, 6084.
(17) For previous examples of asymmetric hydrogenation of electron-rich
N-alkyl and N,N-dialkyl enamines, see: (a) Lee, N. E.; Buchwald, S. L.
J. Am. Chem. Soc. 1994, 116, 5985. (b) Tararov, V. I.; Kadyrov, R.;
Riermeier, T. H.; Holz, J.; Bo¨rner, A. Tetrahedron Lett. 2000, 41, 2351.
(c) Seido, N.; Nishikawa, T.; Sotoguch, T.; Yuasa, Y.; Miura, T.;
Kumobayashi, H. U.S. Patent 5859249, 1999.
(18) Commercially unavailable â-keto esters were prepared via the Masamune
protocol: Brooks, D. W.; Lu, L. D.-L.; Masamune, S. Angew Chem., Int.
Ed. Engl. 1979, 18, 72.
(19) Simple amide exchange of the â-keto esters gives the corresponding
amides: Kibler, C. J.; Weissverger, A. Org. Synth. Collect. Vol. III, 108.
(20) It is postulated that the intramolecular hydrogen bond dictates this
phenomenon. The (Z)-conformation of the substrates is confirmed by NMR
(NOE).
In summary, we have discovered an unprecedented enantiose-
lective reduction of unprotected enamino esters and amides using
commercially available ligands under mild hydrogenation condi-
tions. This method gives high enantioselectivity, high reactivity,
and wide applicability and requires no protecting groups. Contrary
to accepted thinking, our results clearly show that the N-acyl group
is not a prerequisite for such transformations to be effected. It is
(21) The effect of TFE in enamine ester hydrogenations can be mimicked by
other acidic alcohols such as phenol derivatives.
(22) When amide 3a was reduced in MeOH with D2 using catalyst II/[(COD)-
RhCl]2, we observed D-incorporation only in the â-position.
JA047901I
9
J. AM. CHEM. SOC. VOL. 126, NO. 32, 2004 9919