M. Bourotte et al. / Tetrahedron Letters 45 (2004) 6343–6348
6347
4.20; found C% 72.46, H% 4.40, N% 4.25. 4f: mp 191 ꢁC.
1H RMN (DMSO, 300 MHz) d 3.87 (s, 3H, OCH3); 3.90
(s, 3H, OCH3); 3.91 (s, 3H, CO2CH3); 7.15 (d, J ¼ 8:8,
1H, ArH); 7.37 (s, 1H, Ha); 7.4–7.55 (m, 2H, ArH); 7.58
(s, 1H, Hs); 8.00 (d, J ¼ 8:6, 2H, ArH); 8.07 (d, J ¼ 8:6,
2H, ArH). Anal. Calcd C% 68.85, H% 4.95, O% 26.20;
than 600 nm, but disappointing concerning the value of e
(about 13,000 Mꢀ1 cmꢀ1).
In conclusion, we synthesized and investigated new
interesting structural analogues of the GFP chromo-
phore with good fluorescence quantum yields in a
1
found C% 68.51, H% 4.96, O% 26.41. 4i: mp 285 ꢁC. H
hydrophobic environment (/ > 0:24), and large range of
RMN (DMSO, 200 MHz) d 2.11 (s, 3H, CH3); 7.39 (s, 1H,
Ha); 7.58 (s, 1H, Hs); 7.76 (d, J ¼ 8:7, 2H, ArH); 7.88 (d,
J ¼ 8:6, 2H, ArH); 7.95 (d, J ¼ 8:7, 2H, ArH); 8.05 (d,
J ¼ 8:6, 2H, ArH); 10.28 (s, 1H, NHAc). Anal. Calcd with
0.9H2O C% 69.31, H% 4.60, N% 8.09; found C% 69.27,
H% 4.58, N% 8.19.
em
max
emission wavelengths (461 < k
< 594 nm). Most
promising compounds were found in both oxazolone
(2e, 2f, 2i) and butenolide (4e, 4f, 4i) series. Some of
them may constitute a good starting point for building
hydrophobic fluorescent markers of biological materi-
als. Several derivatives may allow very efficient fluores-
cence resonance energy transfer (FRET) and will be
useful for a wide panel of biosensor applications.
10. Oumouch, S.; Bourotte, M.; Schmitt, M.; Bourguignon, J.
J. Synthesis, submitted for publication.
11. General procedure for compounds 3: Compound 4e
(150 mg, 0.6 mmol), dry ammonium acetate (56 mg,
0.72 mmol), and 30% ammonia solution (94 lL,
0.72 mmol) were suspended in MeOH (3 mL). The mixture
was placed in a sealed tube, stirred, and heated to 90 ꢁC
for 5 h. The solution was evaporated to dryness and
CH2Cl2 (5 mL) was added. The product 3e was filtered and
washed with water. Yield 73%. Mp 301 ꢁC. 1H NMR
(DMSO, 200 MHz) d 3.85 (s, 3H, OCH3); 3.88 (s, 3H,
OCH3); 6.85 (s, 1H, Ha); 7.0–7.2 (m, 2H, Hs and ArH);
7.4–7.7 (m, 2H, ArH); 7.90 (d, J ¼ 8:4, 2H, ArH); 7.99 (d,
J ¼ 8:5, 2H, ArH); 10.65 (s, 1H, NH ech./D2O). Anal.
Calcd with 0.2H2O C% 71.50, H% 4.92, N% 8.34; found
C% 71.48, H% 4.74, N% 8.43. 3f: mp 271 ꢁC. 1H NMR
(DMSO, 200 MHz) d 3.81 (s, 3H, OCH3); 3.84 (s, 3H,
OCH3); 3.87 (s, 3H, CO2CH3); 6.82 (s, 1H, Ha); 7.0–7.2
(m, 2H, Hs and ArH); 7.4–7.6 (m, 2H, ArH); 7.91 (d,
J ¼ 8:3, 2H, ArH); 8.00 (d, J ¼ 8:3, 2H, ArH); 10.59 (s,
1H, NH ech./D2O). Anal. Calcd with 0.4H2O C% 67.70,
H% 5.36, N% 3.76; found C% 67.56, H% 5.28, N% 3.90.
3i: mp 281 ꢁC. 1H NMR (DMSO, 200 MHz) d 2.07 (s, 3H,
CH3); 6.83 (s, 1H, Ha); 7.10 (s, 1H, Hs); 7.67 (d, J ¼ 8:8,
2H, ArH); 7.83 (d, J ¼ 8:8, 2H, ArH); 7.86 (d, J ¼ 8:4,
2H, ArH); 7.96 (d, J ¼ 8:4, 2H, ArH); 10.17 (s, 1H, NH
ech./D2O); 10.59 (s, 1H, NH ech./D2O). Anal. Calcd with
0.6H2O C% 70.62, H% 4.80, N% 12.36; found C% 70.66,
H% 4.64, N% 12.44.
Acknowledgement
We thank Cyril Antheaume for carrying out 2D NMR
experiments.
References and notes
1. Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509–544.
2. Zimmer, M. Chem. Rev. 2002, 102, 759–781.
3. Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W. W.;
Prasher, D. C. Science 1994, 263, 802–805.
4. Shimomura, O. FEBS Lett. 1979, 104, 220–222.
5. Heim, R.; Prasher, D. C.; Tsien, R. Y. Proc. Natl. Acad.
Sci. 1994, 91, 12501–12504.
6. Niwa, H.; Inouye, S.; Hirano, T.; Matsuno, T.; Kojima,
S.; Kubota, M.; Ohashi, M.; Tsuji, F. I. Proc. Natl. Acad.
Sci. U.S.A. 1996, 93, 13617–13622.
7. Follenius-Wund, A.; Bourotte, M.; Schmitt, M.; Iyice, F.;
Lami, H.; Bourguignon, J. J.; Haiech, J.; Pigault, C.
Biophys. J. 2003, 85, 1839–1850.
12. Method A: Compound 4g (500 mg, 1.83 mmol) was
suspended in CH3CN (5 mL) and 0.184 mL of isobutyl-
amine was added. The mixture was placed in a sealed tube
and heated to 90–100 ꢁC during 4 h. The solution was
evaporated to dryness under reduced pressure and the
residue was washed with Et2O. The intermediate 5g was
8. Rao, Y. S.; Filler, R. Synthesis 1975, 749–764, Analytical
data for representative compounds of oxazolinones class:
2e: mp 249 ꢁC. 1H RMN (DMSO, 300 MHz) d 3.89 (s, 6H,
2OCH3); 7.22 (d, J ¼ 8:4, 1H, ArH); 7.30 (s, 1H, Hs); 7.58
(s, 1H, ArH); 7.79 (d, J ¼ 8:4, 1H, ArH); 7.96 (d, J ¼ 8:1,
2H, ArH); 8.43 (d, J ¼ 8:4, 2H, ArH). Anal. Calcd C%
68.26, H% 4.22, N% 8.38; found C% 68.30, H% 4.22, N%
1
obtained as a white powder. H NMR (CDCl3, 300 MHz)
d 0.79 (d, J ¼ 6:5, 3H, CH2CH(CH3)2); 0.82 (d, J ¼ 6:5,
3H, CH2CHC(CH3)2); 1.71 (m, 1H, CH2CHC(CH3)2);
2.74 (dd, JHAHc ¼ 8:1 and JHAHB ¼ 13:7, 1H, CHAHB-
CHC(CH3)2); 3.29 (dd, JHBHC ¼ 7:5 and JHAHB ¼ 13:7, 1H,
CHAHBCHC(CH3)2); 3.48 (d, J ¼ 2:2, 2H, CH2 pyrrole);
3.55 (s, 1H, OH); 3.92 (s, 3H, CO2CH3); 7.43 (d, J ¼ 8:4,
2H, ArH); 7.52 (m, 1H, Hs); 7.43 (d, J ¼ 9, 2H, ArH);
7.99 (d, J ¼ 8:4, 2H, Ar2); 8.25 (d, J ¼ 9, 2H, ArH). MS
(ES): 447 (MþNa).
1
8.48. 2f: mp 208 ꢁC. H RMN (DMSO, 200 MHz) d 3.96
(s, 3H, CH3); 4.00 (s, 3H, OCH3); 4.01 (s, 3H, OCH3); 7.01
(d, Jo ¼ 8:6, 1H, ArH); 7.18 (s, 1H, Hs); 7.65 (d, Jm ¼ 2,
1H, ArH); 7.86 (dd, Jo ¼ 8:6 and Jm ¼ 2, 1H, ArH); 8.13
(d, J ¼ 8:6, 2H, ArH); 8.25 (d, J ¼ 8:6, 2H, ArH). Anal.
Calcd C% 65.39, H% 4.66, N% 3.81; found C% 65.30, H%
4.76, N% 3.79. 2i: mp 244 ꢁC. 1H RMN (DMSO,
200 MHz) d 2.10 (s, 3H, NHCOCH3); 7.29 (s, 1H, CH–
Ph); 7.82 (d, J ¼ 9, 2H, ArH); 7.93 (d, J ¼ 8:5, 2H, ArH);
8.07 (d, J ¼ 8:8, 2H, ArH); 8.42 (d, J ¼ 8:3, 2H, ArH);
10.43 (s, 1H, NH). Anal. Calcd with 0.3H2O C% 67.77,
H% 4.07, N% 12.48; found C% 67.73, H% 4.04, N% 12.50.
9. Schueler, F. W.; Hanna, C. J. Am. Chem. Soc. 1951, 73,
3528–3530, Analytical data for representative compounds
of butenolide class: 4e: mp 233 ꢁC. 1H RMN (DMSO,
300 MHz) d 3.84 (s, 3H, OCH3); 3.87 (s, 3H, OCH3); 7.11
(d, J ¼ 8:2, 1H, ArH); 7.33 (s, 1H, Ha); 7.4–7.5 (m, 2H,
ArH); 7.56 (s, 1H, Hs); 7.94 (d, J ¼ 8:3, 2H, ArH); 7.94 (d,
J ¼ 8:3, 2H, ArH). Anal. Calcd C% 72.06, H% 4.54, N%
The intermediate 5g was placed in a sealed tube and
AcOH (3 mL) was added. The mixture was heated at 90–
100 ꢁC for 4 h. After evaporation, the red powder 6g was
washed with EtOH. Yield 28%. Mp 155 ꢁC. 1H
NMR (CDCl3, 200 MHz) d 0.75 (d, J ¼ 6:6, 6H, CH2-
CH(CH3)2); 1.62 (m, 1H, CH2CH(CH3)2); 3.57 (d,
J ¼ 7:6, 1H, CH2CH(CH3)2); 3.94 (s, 3H, CO2CH3);
6.31 (s, 1H, Ha); 7.56 (s, 1H, Hs); 7.6–7.8 (m, 4H, ArH);
8.09 (d, J ¼ 8:4, 2H, ArH); 8.25 (m, 2H, ArH). Anal.
Calcd with 0.3H2O C% 67.08, H% 5.53, N% 6.80; found
C% 67.03, H% 5.55, N% 6.74.