Organic Letters
Letter
Metal Catalysis in the Copper-Catalyzed Trifluoromethylation of
Boronic Acids with CF3I. J. Am. Chem. Soc. 2012, 134, 9034−9037.
(7) Stahl, S. S. Palladium Oxidase Catalysis: Selective Oxidation of
Organic Chemicals by Direct Dioxygen-Coupled Turnover. Angew.
Chem., Int. Ed. 2004, 43, 3400−3420.
(b) Blum, T. R.; Zhu, Y.; Nordeen, S. A.; Yoon, T. P. Photocatalytic
Synthesis of Dihydrobenzofurans by Oxidative [3 + 2] Cycloaddition
of Phenols. Angew. Chem., Int. Ed. 2014, 53, 11056−11059. (c) Liu,
Z.; Zhang, Y.; Cai, Z.; Sun, H.; Cheng, X. Photoredox Removal of p-
Methoxybenzyl Ether Protecting Group with Hydrogen Peroxide as
Terminal Oxidant. Adv. Synth. Catal. 2015, 357, 589−593.
(14) (a) Cano-Yelo, H.; Deronzier, A. Photo-oxidation of some
carbinols by the Ru(II) polypyridyl complex-aryl diazonium salt
system. Tetrahedron Lett. 1984, 25, 5517−5520. (b) DiRocco, D. A.;
Rovis, T. Catalytic asymmetric α-acylation of tertiary amines
mediated by a dual catalysis mode: N-heterocyclic carbene and
photoredox catalysis. J. Am. Chem. Soc. 2012, 134, 8094−8097.
(c) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J.
Functionally Diverse Nucleophilic Trapping of Iminium Intermedi-
ates Generated Utilizing Visible Light. Org. Lett. 2012, 14, 94−97.
(d) Beatty, J. W.; Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. A
scalable and operationally simple radical trifluoromethylation. Nat.
Commun. 2015, 6, 7919. (e) Pandey, G.; Laha, R.; Singh, D. Benzylic
C(sp3)−H Functionalization for C−N and C−O Bond Formation via
Visible Light Photoredox Catalysis. J. Org. Chem. 2016, 81, 7161−
7171.
(8) For alternate strategies toward photoredox oxyaminations using
preoxidized heteroatom donors, see: (a) Davies, J.; Booth, S. G.;
Essafi, S.; Dryfe, R. A. W.; Leonori, D. Visible-Light-Mediated
Generation of Nitrogen-Centered Radicals: Metal-Free Hydro-
imination and Iminohydroxylation Cyclization Reactions. Angew.
Chem., Int. Ed. 2015, 54, 14017−14021. (b) Hu, X.-Q.; Chen, J.;
Chen, J.-R.; Yan, D.-M.; Xiao, W.-J. Organophotocatalytic Generation
of N- and O-Centred Radicals Enables Aerobic Oxyamination and
Dioxygenation of Alkenes. Chem. - Eur. J. 2016, 22, 14141−14146.
(c) Ren, X.; Guo, Q.; Chen, J.; Xie, H.; Xu, Q.; Lu, Z. Visible-Light
Promoted Distereodivergent Intramolecular Oxyamidation of Al-
kenes. Chem. - Eur. J. 2016, 22, 18695−18699. (d) Miyazawa, K.;
Koike, T.; Akita, M. Aminohydroxylation of olefins with iminopyr-
idinium ylides by dual Ir photocatalysis and Sc(OTf)3 catalysis.
Tetrahedron 2016, 72, 7813−7820.
(9) For examples of net-oxidative photoredox methods utilizing
́
́
dioxygen, see: (a) Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson,
C. R. J. Visible-Light Photoredox Catalysis: Aza-Henry Reactions via
C−H Functionalization. J. Am. Chem. Soc. 2010, 132, 1464−1465.
(b) Zou, Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.; Chen, J.-R.;
Xiao, W.-J. Visible-light-induced oxidation/[3 + 2] cycloaddition/
oxidative aromatization sequence: a photocatalytic strategy to
construct pyrrolo[2,1-a]isoquinolines. Angew. Chem., Int. Ed. 2011,
50, 7171−7175. (c) Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.;
Davis, R. L.; Jørgensen, K. A.; Xiao, W.-J. Highly efficient aerobic
oxidative hydroxylation of arylboronic acids: photoredox catalysis
using visible light. Angew. Chem., Int. Ed. 2012, 51, 784−788.
(d) Cheng, Y.; Yang, J.; Qu, Y.; Li, P. Aerobic visible-light photoredox
radical C-H functionalization: catalytic synthesis of 2-substituted
benzothiazoles. Org. Lett. 2012, 14, 98−101. (e) Romero, N. A.;
Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Site-selective arene C-H
amination via photoredox catalysis. Science 2015, 349, 1326−1330.
(f) McManus, J. B.; Nicewicz, D. A. Direct C-H Cyanation of Arenes
via Organic Photoredox Catalysis. J. Am. Chem. Soc. 2017, 139, 2880−
2883.
(15) (a) Hamilton, D. S.; Nicewicz, D. A. Direct catalytic anti-
Markovnikov hydroetherification of alkenols. J. Am. Chem. Soc. 2012,
134, 18577−18580. (b) Nguyen, T. M.; Nicewicz, D. A. Anti-
Markovnikov Hydroamination of Alkenes Catalyzed by an Organic
Photoredox System. J. Am. Chem. Soc. 2013, 135, 9588−9591.
(c) Perkowski, A. J.; Nicewicz, D. A. Direct Catalytic Anti-
Markovnikov Addition of Carboxylic Acids to Alkenes. J. Am. Chem.
Soc. 2013, 135, 10334−10337. (d) Nguyen, T. M.; Manohar, N.;
Nicewicz, D. A. Anti-Markovnikov Hydroamination of Alkenes
Catalyzed by a Two-Component Organic Photoredox System: Direct
Access to Phenethylamine Derivatives. Angew. Chem., Int. Ed. 2014,
53, 6198−6201. (e) Wilger, D. J.; Grandjean, J. M. M.; Lammert, T.
R.; Nicewicz, D. A. The direct anti-Markovnikov addition of mineral
acids to styrenes. Nat. Chem. 2014, 6, 720−726.
(16) (a) Kochi, J. K.; Bemis, A. Carbonium ions from alkyl radicals
by electron transfer. J. Am. Chem. Soc. 1968, 90, 4038−4051.
(b) Kochi, J. K.; Bemis, A.; Jenkins, C. L. Mechanism of electron
transfer oxidation of alkyl radicals by copper(II) complexes. J. Am.
Chem. Soc. 1968, 90, 4616−4625. (c) Jenkins, C. L.; Kochi, J. K.
Homolytic and ionic mechanisms in the ligand-transfer oxidation of
alkyl radicals by copper(II) halides and pseudohalides. J. Am. Chem.
Soc. 1972, 94, 856−865.
(17) (a) Yoo, W.-J.; Tsukamoto, T.; Kobayashi, S. Visible-Light-
Mediated Chan−Lam Coupling Reactions of Aryl Boronic Acids and
Aniline Derivatives. Angew. Chem., Int. Ed. 2015, 54, 6587−6590.
(b) Perepichka, I.; Kundu, S.; Hearne, Z.; Li, C.-J. Efficient merging of
copper and photoredox catalysis for the asymmetric cross-
dehydrogenative-coupling of alkynes and tetrahydroisoquinolines.
Org. Biomol. Chem. 2015, 13, 447−451. (c) Mao, R.; Frey, A.;
Balon, J.; Hu, X. Decarboxylative C(sp3)−N cross-coupling via
synergetic photoredox and copper catalysis. Nat. Catal. 2018, 1, 120−
126. (d) Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C.
Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids. J.
Am. Chem. Soc. 2018, 140, 6522−6526. (e) Le, C.; Chen, T. Q.;
Liang, T.; Zhang, P.; MacMillan, D. W. C. A radical approach to the
copper oxidative addition problem: Trifluoromethylation of bromoar-
enes. Science 2018, 360, 1010−1014. (f) Liang, Y.; Zhang, X.;
MacMillan, D. W. C. Decarboxylative sp3 C−N coupling via dual
copper and photoredox catalysis. Nature 2018, 559, 83−88.
(18) (a) Zabawa, T. P.; Kasi, D.; Chemler, S. R. Copper(II) Acetate
Promoted Intramolecular Diamination of Unactivated Olefins. J. Am.
Chem. Soc. 2005, 127, 11250−11251. (b) Baran, P. S.; DeMartino, M.
P. Intermolecular Oxidative Enolate Heterocoupling. Angew. Chem.,
Int. Ed. 2006, 45, 7083−7086. (c) Stuart, D. R.; Fagnou, K. The
Catalytic Cross-Coupling of Unactivated Arenes. Science 2007, 316,
1172−1175. (d) Hyster, T. K.; Rovis, T. Rhodium-Catalyzed
Oxidative Cycloaddition of Benzamides and Alkynes via C−H/N−
H Activation. J. Am. Chem. Soc. 2010, 132, 10565−10569.
(10) (a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent Advances
in Transition Metal Catalyzed Oxidation of Organic Substrates with
Molecular Oxygen. Chem. Rev. 2005, 105, 2329−2364. (b) Shi, Z.;
Zhang, C.; Tang, C.; Jiao, N. Recent advances in transition-metal
catalyzed reactions using molecular oxygen as the oxidant. Chem. Soc.
Rev. 2012, 41, 3381−3430. (c) Campbell, A. N.; Stahl, S. S.
Overcoming the ‘Oxidant Problem’: Strategies to Use O2 as the
Oxidant in Organometallic C−H Oxidation Reactions Catalyzed by
Pd (and Cu). Acc. Chem. Res. 2012, 45, 851−863.
(11) (a) Winterle, J. S.; Kliger, D. S.; Hammond, G. S. Mechanisms
of photochemical reactions in solution. 80. Photochemical oxidation
of tris(2,2’-bipyridyl)ruthenium(II) by molecular oxygen. J. Am.
Chem. Soc. 1976, 98, 3719−3721. (b) Srinivasan, V. S.; Podolski, D.;
Westrick, N. J.; Neckers, D. C. Photochemical generation of
superoxide ion (O2 ) by Rose Bengal and Ru(bpy)32+. J. Am. Chem.
−
Soc. 1978, 100, 6513−6515. (c) Takizawa, S.; Aboshi, R.; Murata, S.
Photooxidation of 1,5-dihydroxynaphthalene with iridium complexes
as singlet oxygen sensitizers. Photochem. Photobiol. Sci. 2011, 10, 895−
903.
(12) (a) Maillard, B.; Ingold, K. U.; Scaiano, J. C. Rate constants for
the reactions of free radicals with oxygen in solution. J. Am. Chem. Soc.
1983, 105, 5095−5099. (b) Ohkubo, K.; Nanjo, T.; Fukuzumi, S.
Efficient Photocatalytic Oxygenation of Aromatic Alkene to 1,2-
Dioxetane with Oxygen via Electron Transfer. Org. Lett. 2005, 7,
4265−4268.
(13) For examples of net-oxidative photoredox methods using
peroxides, see: (a) Dai, C.; Meschini, F.; Narayanam, J. M. R.;
Stephenson, C. R. J. Friedel−Crafts Amidoalkylation via Thermolysis
and Oxidative Photocatalysis. J. Org. Chem. 2012, 77, 4425−4431.
E
Org. Lett. XXXX, XXX, XXX−XXX