Table 2. Effects of 7d on HepG2 tumor weights and mouse body weights in vivoa
Weight (g)
Entry
Dose
Day 1
Day 14
Tumor weight (g)
1.54 0.22
Inhibitory ratio (%)
Control
0.4 mL/mouse
1 mg/kg
2 mg/kg
4 mg/kg
21.00 0.89
20.82 1.34
20.91 1.31
21.30 0.64
30.10 2.39
29.09 1.56
28.36 2.80
27.20 2.23
1.45 0.24
6.09
7d
1.13 0.23b
0.84 0.24b
26.59
45.56
aData shown are means SD of tumor weights and mouse body weights for each group of mice (n = 10). bP < 0.01 vs control.
Finally, the anticancer activity of 7d was evaluated in mice.
HepG2 xenograft models were established on ICR mice, which
were then randomized into four groups. Three groups were
injected with different doses of 7d (1, 2, 4 mg/kg, respectively)
intravenously every two days, and the fourth group was treated as
vehicle control. It was found that 7d exhibited tumor-retarding
effects in a concentration-dependent way as measured by tumor
weight after two weeks (Table 2). Meanwhile, 4 mg/kg of 7d
significantly reduced tumor volume as compared with control
(Figure 7). In addition, treatment of 7d showed no significant
effects on mouse body weights after two weeks (Table 2),
indicating the safety of 7d in vivo.
This study was supported by Social Development Foundation
of Jiangsu, China (BE20137080).
References and notes
1.
2.
Gordaliza, M., Garcia, P. A., del Corral, J. M., Castro, M. A.,
Gomez-Zurita, M. A. Toxicon 2004, 44, 441.
Terada, T., Fujimoto, K., Nomura, M., Yamashita, J., Kobunai,
T., Takeda, S., Wierzba, K., Yamada, Y., Yamaguchi, H.
Chem. Pharm. Bull. (Tokyo) 1992, 40, 2720.
Wozniak, A. J., Ross, W. E. Cancer Res. 1983, 43, 120.
Imbert, T. F. Biochimie 1998, 80, 207.
3.
4.
5.
Khaled, M., Jiang, Z. Z., Zhang, L. Y. J. Ethnopharmacol.
2013, 149, 24.
6.
7.
8.
Shin, S. Y., Yong, Y., Kim, C. G., Lee, Y. H., Lim, Y. Cancer
Lett. 2009, 287, 231.
Yong, Y., Shin, S. Y., Lee, Y. H., Lim, Y. Bioorg. Med. Chem.
Lett. 2009, 19, 4367.
Chen, S.-W., Gao, Y.-Y., Zhou, N.-N., Liu, J., Huang, W.-T.,
Hui, L., Jin, Y., Jin, Y.-X. Bioorg. Med. Chem. Lett. 2011, 21,
7355.
9.
Jin, Y., Liu, J., Huang, W.-T., Chen, S.-W., Hui, L. Eur. J.
Med. Chem. 2011, 46, 4056.
10. Huang, W.-T., Liu, J., Liu, J.-F., Hui, L., Ding, Y.-L., Chen,
S.-W. Eur. J. Med. Chem. 2012, 49, 48.
11. Wang, F., Lu, W., Zhang, T., Dong, J. Y., Gao, H. P., Li, P. F.,
Wang, S. C., Zhang, J. Bioorg. Med. Chem. 2013, 21, 6973.
12. Carosati, E., Tochowicz, A., Marverti, G., Guaitoli, G.,
Benedetti, P., Ferrari, S., Stroud, R. M., Finer-Moore, J.,
Luciani, R., Farina, D., Cruciani, G., Costi, M. P. J. Med.
Chem. 2012, 55, 10272.
Figure 7. Inhibitory effects of 7d on the growth of HepG2 xenografts in vivo.
Mice inoculated with HepG2 xenografts were randomly treated with 4 mg/kg
of 7d or vehicle every two days, and the volumes of tumors were measured at
the indicated time points. Data are shown as means SD from each group of
mice (n = 10).
13. Chen, I. L., Chen, J. Y., Shieh, P. C., Chen, J. J., Lee, C. H.,
Juang, S. H., Wang, T. C. Bioorg. Med. Chem. 2008, 16, 7639.
14. Kamal, A., Mallareddy, A., Suresh, P., Shaik, T. B., Nayak, V.
L., Kishor, C., Shetti, R. V. C. R. N. C., Rao, N. S., Tamboli, J.
R., Ramakrishna, S., Addlagatta, A. Bioorg. Med. Chem. 2012,
20, 3480.
15. Chen, I. L., Chang, K. M., Miaw, C. L., Liao, C. H., Chen, J.
J., Wang, T. C. Bioorg. Med. Chem. 2007, 15, 6527.
16. Ganguly, A., Banerjee, K., Chakraborty, P., Das, S., Sarkar, A.,
Hazra, A., Banerjee, M., Maity, A., Chatterjee, M., Mondal, N.
B., Choudhuri, S. K. Biomed. Pharmacother. 2011, 65, 387.
17. Lu, J., Xin, S. C., Meng, H., Veldman, M., Schoenfeld, D.,
Che, C., Yan, R. B., Zhong, H. B., Li, S., Lin, S. PLoS ONE
2013, 8.
18. Prabhakar, B. T., Khanum, S. A., Jayashree, K., Salimath, B.
P., Shashikanth, S. Bioorg. Med. Chem. 2006, 14, 435.
19. Maddaford, S. P., Charlton, J. L. J. Org. Chem. 1993, 58, 4132.
20. Zhang, Z. W., Zhang, J. Q., Hui, L., Chen, S. W., Tian, X. Eur.
J. Med. Chem. 2010, 45, 1673.
21. Vogel, S., Kaufmann, D., Pojarova, M., Muller, C., Pfaller, T.,
Kuhne, S., Bednarski, P. J., von Angerer, E. Bioorg. Med.
Chem. 2008, 16, 6436.
PPT represents an attracting lead compound for anticancer
drug development. In current study, diverse aryloxyacetanilide
moieties were conjugated to the 4′-hydroxy of 4′-demethyl-4-
deoxypodophyllotoxin (3), generating a panel of novel PPT
derivatives (7a–j). MTT assays led to the discovery of the most
potent compound 7d, which inhibited the proliferation of cancer
cells with sub to low micromolar IC50 values. Further mechanism
studies revealed that 7d induced cancer cell cycle arrest in G2/M
phase. Western blot assays indicated that 7d suppressed the
expression of cyclin A, cyclin B, CDK1, and cdc25c, while
induced the expression of p21. Moreover, in vivo study
demonstrated that 4 mg/kg of 7d reduced the volumes and
weights of HepG2 mice xenografts without dramatically
affecting mouse body weights. In summary, our study suggested
7d as a potential anticancer compound, and further evaluation of
7d is on-going.
22. Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J.,
Massague, J., Pavletich, N. P. Nature 1995, 376, 313.
Acknowledgments