5534
H. Tadaoka, T. Yamakawa / Tetrahedron Letters 53 (2012) 5531–5534
10. Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am.
Chem. Soc. 2003, 125, 6653–6655.
11. Anderson, K. W.; Mendez-Perez, M.; Priego, J.; Buchwald, S. L. J. Org. Chem.
2003, 68, 9563–9573; (b) Tundel, R. E.; Anderson, K. W.; Buchwald, S. L. J. Org.
Chem. 2006, 71, 430–433.
12. Gao, C.-Y.; Yang, L.-M. J. Org. Chem. 2008, 73, 1624–1627.
13. Xie, X.; Ni, G.; Ma, F.; Ding, L.; Xu, S.; Zhang, Z. Synlett 2011, 955–958.
14. (a) Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 1997, 62, 1264–1267; (b) Wolfe, J.
P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158–
1174.
On the other hand, the yield of (2-biphenylyl)(1-naphthyl)amine v
was low presumably due to the repulsion between 2-biphenylyl
and 1-naphthyl groups.
The reaction of 2-naphthyl tosylate and BrMg(NPh2) under the
same condition as entry 1 afforded the product g in 46% yield. In
addition, the yield of g was 47% when using sodium diphenylam-
ide. These results indicate the advantage of the combination use
8,9
of Ar–SO2NMe2 and BrMg(NAr2) for the present arylation just
15. So, C. M.; Zhou, Z.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2008, 47, 6402–
6406.
like the results in Table 1.
In conclusion, we presented a new route to unsymmetrical 1,10-
biphenyl-4,40-diamine compounds from 40-bromo-1,10-biphenyl-4-
ol through reaction with ClSO2NMe2 and successive arylation with
a conventional Pd catalyst and Ni(cod)2/IPr catalyst. The latter Ni-
catalyzed arylation was applicable to the synthesis of a wide range
of NAr3 and HNAr2 which will be promising raw materials in vari-
ous fields. The development of more active Ni catalysts is currently
under investigation.
16. (a) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 7215–
7216; (b) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 7217–7218.
17. Characterization of new compounds: 4-(40-bromo)-1,10-biphenylyl N,N-
dimethylsulfamate (a): white solid. Mp: 110.9–111.6 °C. 1H NMR (CDCl3,
400 MHz): d 3.01 (6H, s), 7.35 (2H, d, J = 8.5 Hz), 7.41 (2H, d, J = 8.5 Hz), 7.55
(2H, d, J = 8.5 Hz), 7.56 (2H, d, J = 8.5 Hz). 13C NMR (CDCl3, 100 MHz): d 38.8,
121.9, 122.2, 128.3, 128.7, 132.0, 138.6, 138.9, 149.9. IR (neat): 2366, 1479,
1358, 1173, 1151, 960, 854, 816, 769, 729, 698 cmꢀ1
14H14NO3SBr: 354.9878. Found: 354.9873. 4-(40-diphenylamino)-1,1-
. HRMS: Calcd for
C
biphenylyl N,N-dimethylsulfamate (b): white solid. Mp: 129.4–132.8 °C. 1H
NMR (CDCl3, 400 MHz): d 2.99 (6H, s), 7.04 (2H, t, J = 7.4 Hz), 7.11–7.14 (6H,
m), 7.24–7.34 (6H, m), 7.40–7.43 (2H, m), 7.54–7.57 (2H, m). 13C NMR (CDCl3,
100 MHz): d 55.5, 114.7, 120.9, 122.7, 124.2, 126.5, 127.06, 127.11, 129.2,
132.7, 135.1, 141.0, 146.4, 147.7, 147.8, 155.8. IR (neat): 2925, 1730, 1585,
1485, 1362, 1273, 1147, 978, 866, 852, 827, 721, 692 cmꢀ1. HRMS: Calcd for
C26H24N2O3S: 444.1508. Found: 444.1507. N,N-bis(4-methoxyphenyl)-N0,N0-
diphenyl-1,10-bipheny-4,40-diamine (d): yellow solid. Mp: 128.8–131.8 °C. 1H
NMR (CDCl3, 400 MHz): d 3.80 (6H, s), 6.81–6.85 (4H, m), 6.95–7.03 (4H, m),
7.05–7.13 (10H, m), 7.23–7.27 (4H, m), 7.36–7.44 (4H, m). 13C NMR (CDCl3,
100 MHz): d 38.8, 122.0, 123.1, 123.7, 124.6, 127.8, 127.9, 129.3, 133.6, 139.4,
147.5, 147.6, 149.2. IR (neat): 3032, 2954, 2360, 1587, 1489, 1273, 1236, 1034,
818, 754, 694 cmꢀ1. HRMS: Calcd for C38H32N2O2: 548.2464. Found: 548.2455.
(1-naphthyl)(2-naphthyl)phenylamine (i): yellow solid. Mp: 67.2–70.0 °C. 1H
NMR (CDCl3, 400 MHz): d 6.96 (1H, tt, J = 7.2 Hz, 1.1 Hz), 7.06–7.09 (2H, m),
7.19–7.24 (2H, m), 7.27–7.36 (6H, m), 7.42–7.51 (3H, m), 7.67 (1H, d,
J = 9.5 Hz), 7.72 (1H, d, J = 7.4 Hz), 7.79 (1H, d, J = 8.2 Hz), 7.89 (1H, d,
J = 8.4 Hz), 7.96 (1H, d, J = 8.5 Hz). 13C NMR (CDCl3, 100 MHz): d 117.6, 122.0,
122.2, 122.9, 124.1, 124.3, 126.19, 126.24, 126.4, 126.47, 126.54, 126.9, 127.3,
127.5, 128.4, 128.8, 129.2, 129.5, 131.2, 134.4, 135.3, 143.6, 146.2, 148.5. IR
(neat): 3055, 2360, 2332, 1589, 1489, 1466, 1392, 1290, 1271, 771, 742,
694 cmꢀ1. HRMS: Calcd for C26H19N: 345.1517. Found: 345.1513.
Acknowledgment
We thank the associate professor Hirokazu Horino at University
of Toyama for HRMS characterization.
References and notes
1. Shirota, Y. In Organic Light-Emitting Devices; Wiley: Weinheim, 2006.
2. (a) Hartwig, J. F. Pure Appl. Chem. 1999, 71, 1417–1423; (b) Muci, A. R.;
Buchwbald, S. L. Top. Curr. Chem. 2002, 219, 131–209; (c) Wolfe, J. P.; Wagaw,
S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805–818; (d)
Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046–2067; (e) Surry, D. S.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338–6361; (f) Hartwig, J. F.
Synlett 1997, 329–340.
3. Nagao, S.; Matsumoto, T.; Koga, Y.; Matsubara, K. Chem. Lett. 2011, 40, 1036–
1038.
4. Mitsumori, M. JP2006-285119.
5. (a) Goodbrand, H. B.; Hu, N.-X. J. Org. Chem. 1999, 64, 670–674; (b) Kannan, R.;
He, G. S.; Lin, T.-C.; Prasad, P. N.; Vaia, R. A.; Tan, L. S. Chem. Mater. 2004, 16,
185–194; (c) Li, Z. H.; Wong, M. S.; Tao, Y.; D’Iorio, M. J. Org. Chem. 2004, 69,
921–927.
6. Yamamoto, T.; Nishiyama, M.; Koie, Y. Tetrahedron Lett. 1998, 39, 2367–2370.
7. (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.;
Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346–1416; (b) Li, B.-J.; Yu, D.-G.;
Sun, C.-L.; Shi, Z.-J. Chem. Eur. J. 2011, 17, 1728–1759; (c) Mesganaw, T.;
Silberstein, A. L.; Ramgren, S. D.; Nathel, N. F. F.; Hong, X.; Liu, P.; Garg, N. K.
Chem. Sci. 2011, 2, 1766–1771; (d) So, C.-M.; Kwong, F.-Y. Chem. Soc. Rev. 2011,
40, 4963–4972; (e) Shimasaki, T.; Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed.
2010, 49, 2929–2932; (f) Tobisu, M.; Shimasaki, T.; Chatani, N. Chem. Lett. 2009,
38, 710–711.
18. Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg, N. K. J. Am. Chem. Soc. 2009,
131, 17748–17749.
19. Even with a Pd catalyst, only three examples by the use of unconventional X-
Phos10 and 2-(2-dicyclohexylphenyl)-1-methyl-9H-indole15 ligands have been
reported; moreover, PhB(OH)2 is required to facilitate the reduction of Pd(II) to
catalytically active Pd(0).10,13,15
20. Chen, C.; Yang, L.-M. Org. Lett. 2005, 7, 2209–2211.
21. Yang, L.; Wang, X.; Li, A.; Su, D.; Liu, H.; Han, Y. CN 2006-10048178.
22. General procedure: The synthetic procedure of (2-naphthyl)diphenylamine (g)
is used as an example hereinafter. 2-Naphthyl N,N-dimethylsulfamate (76 mg,
0.30 mmol), Ni(cod)2 (7.8 mg, 0.030 mmol), and 1,4-dioxane solution of IPr
(23.5 mM, 2.6 mL) were charged in a two-neck flask in Ar atmosphere. To the
resulting mixture, THF solution of bromomagnesium diphenylamide (1.0 M,
0.6 mL) was added dropwise. After stirring for 24 h at 110 °C, the product was
isolated using silica gel chromatography.
8. Ackermann, L.; Sandmann, R.; Song, W. Org. Lett. 2011, 13, 1784–1786.
9. Ramgren, S. D.; Silberstein, A. L.; Yang, Y.; Garg, N. K. Angew. Chem., Int. Ed.
2011, 50, 2171–2173.