A R T I C L E S
He et al.
to describe these proton transfer processes. Almost every aspect
of an enolization may affect its mechanism, including the steric
and electronic nature of the base and the substrate,14 the aggre-
gation state of the metal amide, the temperature, the solvent,
and the presence of additives, such as salts or cosolvents.15,16
Another complication is that the mechanism may change as the
reaction progresses since the composition of the species present
in solution can vary with the extent of reaction.11g These
complexities are characteristic of organolithium chemistry,
where the relatively ionic bonding, combined with the metal’s
monovalency, leads to intra- and intermolecular fluxionality.17,18
Our group has had a longstanding interest in the use of
magnesium bis(amides), Mg(NR2)2, as alternatives to lithium
amides in enolization reactions.19,20 Using a divalent metal
reagent allows one greater latitude in tuning the ancillary ligands.
Judicious choice of ancillary ligands, coupled with the greater
covalency of bonds to magnesium compared to lithium,21 allows
access to systems with simpler solution aggregation behavior
and higher thermal stability.22 We and others have demonstrated
the utility of magnesium bis(amide) bases in the regio- and
stereoselective deprotonation of ketones,23,24 as well as with
other substrates, including substituted aromatics,25 cubanes25a,26
and indoles.27 Eaton has shown that alkylmagnesium amides
are useful in the regioselective deprotonation of weakly acidic
substrates, such as cyclopropane and cyclobutane carboxam-
ides.28 We have also developed a series of homochiral magne-
sium bis(amide) reagents that have proven to be highly selective
in the enantioselective deprotonation of conformationally locked
ketones.29 Other emerging applications of homochiral magne-
sium amide reagents in asymmetric synthesis include amina-
tions,30 conjugate additions,31 alkylations,32 and reductions.33
Mixed alkali/alkaline earth metal amide complexes34 have also
very recently been highlighted as regioselective bases in the
deprotonation of ketones,35 arenes,36 and metallocenes.37 In
addition, magnesium amides have been employed with some
success as catalysts in anionic38 and ring-opening polymerization
reactions.39
(8) (a) Williard, P. G.; Carpenter, G. B. J. Am. Chem. Soc. 1985, 107, 3345.
(b) Seebach, D.; Amstutz, R.; Laube, T.; Schweizer, W. B.; Dunitz, J. D.
J. Am. Chem. Soc. 1985, 107, 5403. (c) Laube, T.; Dunitz, J. D.; Seebach,
D. HelV. Chim. Acta 1985, 68, 1373. (d) Jastrzebski, J. T. B. H.; Van Koten,
G.; Christophersen, M. J. N.; Stam, C. H. J. Organomet. Chem. 1985, 292,
319. (e) Amstutz, R.; Dunitz, J. D.; Laube, T.; Schweizer, W. B.; Seebach,
D. Chem. Ber. 1986, 119, 434. (f) Williard, P. G.; Hintze, M. J. J. Am.
Chem. Soc. 1987, 109, 5539.
(9) For solution studies of lithium enolates, see: (a) Sato, D.; Kawasaki, H.;
Shimada, I.; Arata, Y.; Okamura, K.; Date, T.; Koga, K. J. Am. Chem.
Soc. 1992, 114, 761. (b) Suzuki, M.; Koyama, H.; Noyori, R. Bull. Chem.
Soc. Jpn. 2004, 77, 259. (c) Suzuki, M.; Koyama, H.; Noyori, R.
Tetrahedron 2004, 60, 1571.
(21) Wakefield, B. J. Organomagnesium Methods in Organic Synthesis;
Academic: London, 1994.
(10) (a) Held, G.; Xie, L. Microchem. J. 1997, 55, 261. (b) Xie, L.; Saunders,
W. H., Jr. J. Am. Chem. Soc. 1991, 113, 3123. (c) Beutelman, H. P.; Xie,
L.; Saunders, W. H., Jr. J. Org. Chem. 1989, 54, 1703. (d) Majewski, M.;
Nowak, P. Tetrahedron Lett. 1998, 39, 1661.
(22) (a) Markies, P. R.; Akkerman, O. S.; Bickelhaupt, F.; Smeets, W. J. J.;
Spek, A. L. AdV. Organomet. Chem. 1991, 32, 147. (b) Westerhausen, M.
Angew. Chem., Int. Ed. 2001, 40, 2975. (c) Lindsell, W. E. In Compre-
hensiVe Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Eds.;
Pergamon: Oxford, 1982; Vol. 1, Chapter 4.2.
(11) For kinetic studies, see: (a) McNeil, A. J.; Collum, D. B. J. Am. Chem.
Soc. 2005, 127, 5655. (b) Zhao, P. J.; Condo, A.; Keresztes, I.; Collum, D.
B. J. Am. Chem. Soc. 2004, 126, 3113. (c) Zhao, P. J.; Lucht, B. L.; Kenkre,
S. L.; Collum, D. B. J. Org. Chem. 2004, 69, 242. (d) Zhao, P. J.; Collum,
D. B. J. Am. Chem. Soc. 2003, 125, 14411. (e) Zhao, P. J.; Collum, D. B.
J. Am. Chem. Soc. 2003, 125, 4008. (f) Sun, X. F.; Collum, D. B. J. Am.
Chem. Soc. 2000, 122, 2452. (g) Sun, X. F.; Collum, D. B. J. Am. Chem.
Soc. 2000, 122, 2459. (h) Sun, X. F.; Kenkre, S. L.; Remenar, J. F.;
Gilchrist, J. H.; Collum, D. B. J. Am. Chem. Soc. 1997, 119, 4765.
(12) For solution NMR studies, see: (a) Kim, Y. J.; Bernstein, M. P.; Roth, A.
S. G.; Romesberg, F. E.; Williard, P. G.; Fuller, D. J.; Harrison, A. T.;
Collum, D. B. J. Org. Chem. 1991, 56, 4435. (b) Galiano-Roth, A. S.;
Kim, Y. J.; Gilchrist, J. H.; Harrison, A. T.; Fuller, D. J.; Collum, D. B. J.
Am. Chem. Soc. 1991, 113, 5053. (c) McNeil, A. J.; Toombes, G. E. S.;
Chandramouli, S. V.; Vanasse, B. J.; Ayers, T. A.; O’Brien, M. K.;
Lobkovsky, E.; Gruner, S. M.; Marohn, J. A.; Collum, D. B. J. Am. Chem.
Soc. 2004, 126, 5938.
(13) For selectivity and theoretical studies, see: (a) Romesberg, F. E.; Collum,
D. B. J. Am. Chem. Soc. 1995, 117, 2166. (b) Hall, P. L.; Gilchrist, J. H.;
Collum, D. B. J. Am. Chem. Soc. 1991, 113, 9571.
(14) (a) Xie, L. F.; Vanlandeghem, K.; Isenberger, K. M.; Bernier, C. J. Org.
Chem. 2003, 68, 641. (b) Xie, L. F.; Isenberger, K. M.; Held, G.; Dahl, L.
M. J. Org. Chem. 1997, 62, 7516.
(15) (a) Seebach, D.; Beck, A. K.; Studer, A. Mod. Synth. Methods 1995, 7, 1.
(b) Loupy, A.; Tchoubar, B. Salt Effects in Organic and Organometallic
Chemistry; VCH: New York, 1991. (c) Pratt, L. M. Mini-ReViews in
Organic Chemistry 2004, 1, 209.
(23) He, X.; Allan, J. F.; Noll, B. C.; Kennedy, A. R.; Henderson, K. W. J. Am.
Chem. Soc. 2005, 127, 6920.
(24) (a) Bonafoux, D.; Bordeau, M.; Biran, C.; Cazeau, P.; Dunogues, J. J. Org.
Chem. 1996, 61, 5532. (b) Lesse`ne, G.; Tripoli, R.; Cazeau, P.; Biran, C.;
Bordeau, M. Tetrahedron Lett. 1999, 40, 4037. (c) Bonafoux, D.; Bordeau,
M.; Biran, C.; Dunogues, J. Synth. Commun. 1998, 28, 93. (d) Bonafoux, D.;
Bordeau, M.; Biran, C.; Dunogues, J. J. Organomet. Chem. 1995, 493, 27.
(25) (a) Eaton, P. E.; Lee, C. H.; Xiong, Y. H. J. Am. Chem. Soc. 1989, 111,
8016. (b) Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K. Angew. Chem.,
Int. Ed. 2005, 44, 3055. (c) Ooi, T.; Uematsu, Y.; Maruoka, K. J. Org.
Chem. 2003, 68, 4576.
(26) Eaton, P. E.; Xiong, Y. H.; Gilardi, R. J. Am. Chem. Soc. 1993, 115, 10195.
(27) Kondo, Y.; Yoshida, A.; Sakamoto, T. J. Chem. Soc., Perkin Trans. 1 1996,
2331.
(28) (a) Zhang, M. X.; Eaton, P. E. Angew. Chem., Int. Ed. 2002, 114, 2273.
(b) Eaton, P. E.; Zhang, M. X.; Komiya, N.; Yang, C. G.; Steele, I.; Gilardi,
R. Synlett 2003, 9, 1275.
(29) (a) Henderson, K. W.; Kerr, W. J.; Moir, J. H. Tetrahedron 2002, 58, 4573.
(b) Anderson, J. D.; Garcia, P. G.; Hayes, D.; Henderson, K. W.; Kerr, W.
J.; Moir, J. H.; Fondekar, K. P. Tetrahedron Lett. 2001, 42, 7111. (c)
Henderson, K. W.; Kerr, W. J.; Moir, J. H. Synlett 2001, 1253. (d)
Henderson, K. W.; Kerr, W. J.; Moir, J. H. Chem. Commun. 2001, 1722.
(e) Henderson, K. W.; Kerr, W. J.; Moir, J. H. Chem. Commun. 2000,
479. (f) Carswell, E. L.; Hayes, D.; Henderson, K. W.; Kerr, W. J.; Russell,
C. J. SynLett 2003, 1017. (g) Bassindale, M. J.; Crawford, J. J.; Henderson,
K. W.; Kerr, W. J. Tetrahedron Lett. 2004, 45, 4175.
(16) For studies of mixed anions, see: (a) Romesberg, F. E.; Collum, D. B. J.
Am. Chem. Soc. 1994, 116, 9187. (b) Gilchrist, J. H.; Harrison, A. T.; Fuller,
D. J.; Collum, D. B. Magn. Reson. Chem. 1992, 30, 855. (c) Hall, P. L.;
Gilchrist, J. H.; Harrison, A. T.; Fuller, D. J.; Collum, D. B. J. Am. Chem.
Soc. 1991, 113, 9575. (d) Henderson, K. W.; Dorigo, A. E.; Liu, Q. Y.;
Williard, P. G.; Schleyer, P. v. R.; Bernstein, P. R. J. Am. Chem. Soc.
1996, 118, 1339. (e) Sugasawa, K.; Shindo, M.; Noguchi, H.; Koga, K.
Tetrahedron Lett. 1996, 37, 7377. (f) Henderson, K. W.; Walther, D. S.;
Williard, P. G. J. Am. Chem. Soc. 1995, 117, 8680. (g) Henderson, K. W.;
Dorigo, A. E.; Liu, Q. Y.; Williard, P. G.; Bernstein, P. R. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1322. (h) Kim, Y. J.; Streitwieser, A. Org. Lett.
2002, 4, 573.
(17) (a) Stey, T.; Stalke, D. In The Chemistry of Organolithium Compounds;
Rappoport, Z., Patai, S., Eds.; Wiley: New York, 2004; Chapter 2. (b)
Gregory, K.; Schleyer, P. v. R.; Snaith, R. AdV. Inorg. Chem. 1991, 37,
47. (c) Weiss, E. Angew Chem., Int. Ed. Engl. 1993, 32, 1501. (d) Beswick,
M. A.; Wright, D. S. In ComprehensiVe Organometallic Chemistry; Abel,
E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier: Oxford, 1995; Vol.
1, Chapter 1. (e) Boche, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 277.
(f) Mulvey, R. E. Chem. Soc. ReV. 1998, 27, 339.
(30) Evans, D. A.; Nelson, S. G. J. Am. Chem. Soc. 1997, 119, 6452.
(31) (a) Sibi, M. P.; Asano, Y. J. Am. Chem. Soc. 2001, 123, 9708. (b) Bunnage,
M. E.; Davies, S. G.; Goodwin, C. J.; Walters, J. A. S. Tetrahedron:
Asymmetry 1994, 5, 35.
(32) Yong, K. H.; Taylor, N. J.; Chong, J. M. Org. Lett. 2002, 4, 3553.
(33) Yong, K. H.; Chong, J. M. Org. Lett. 2002, 4, 4139.
(34) (a) Mulvey, R. E. Chem. Commun. 2001, 1049. (b) Mulvey, R. E.
Organometallics 2006, 25, 1060. (c) Clegg, W.; Henderson, K. W.; Mulvey,
R. E.; O’Neil, P. A. J. Chem. Soc., Chem. Commun. 1993, 969.
(35) (a) He, X.; Noll, B. C.; Beatty, A.; Mulvey, R. E.; Henderson, K. W. J.
Am. Chem. Soc. 2004, 126, 7444. (b) Hevia, E.; Henderson, K. W.;
Kennedy, A. R.; Mulvey, R. E. Organometallics 2006, 25, 1778.
(36) (a) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem., Int. Ed.
2006, 45, 2958. (b) Armstrong, D. R.; Kennedy, A. R.; Mulvey, R. E.;
Rowlings, R. B. Angew. Chem., Int. Ed. 1999, 38, 131. (c) Andrews, P.
C.; Kennedy, A. R.; Mulvey, R. E.; Raston, C. L.; Roberts, B. A.; Rowlings,
R. B. Angew. Chem., Int. Ed. 2000, 39, 1960.
(37) (a) Clegg, W.; Henderson, K. W.; Kennedy, A. R.; Mulvey, R. E.; O’Hara,
C. T.; Rowlings, R. B.; Tooke, D. M. Angew. Chem., Int. Ed. 2001, 40,
3902. (b) Hevia, E.; Honeyman, G. W.; Kennedy, A. R.; Mulvey, R. E.;
Sherrington, D. C. Angew. Chem., Int. Ed. 2005, 44, 68. (c) Andrikopoulos,
P. C.; Armstrong, D. R.; Clegg, W.; Gilfillan, C. J.; Hevia, E.; Kennedy,
A. R.; Mulvey, R. E.; O’Hara, C. T.; Parkinson, J. A.; Tooke, D. M. J.
Am. Chem. Soc. 2004, 126, 11612.
(18) Sapse, A. M., Schleyer, P. v. R., Eds. Lithium Chemistry, A Theoretical
and Experimental OVerView; John Wiley & Sons: New York, 1995.
(19) Henderson, K. W.; Kerr, W. J. Chem. Eur. J. 2001, 7, 3430.
(20) Henderson, K. W.; Allan, J. F.; Kennedy, A. R. J. Chem. Soc., Chem.
Commun. 1997, 1149.
(38) Harder, S.; Feil, F. Organometallics 2002, 21, 2268.
9
13600 J. AM. CHEM. SOC. VOL. 128, NO. 41, 2006