E
S. Chaabouni et al.
Letter
Synlett
(3) For recent reviews dealing with the CuAAC reaction, see: (a) Li,
L.; Zhang, Z. Molecules 2016, 21, 1393/1. (b) Chassaing, S.;
Bénéteau, V.; Pale, P. Catal. Sci. Technol. 2016, 6, 923. (c) Haldon,
E.; Nicasio, M. C.; Perez, P. J. Org. Biomol. Chem. 2015, 13, 9528.
(d) Sokolova, N. V.; Nenadjenko, V. G. RSC Adv. 2013, 3, 16212.
(e) Ganesh, V.; Sudhi, V. S.; Kundu, T.; Chandrasekaran, S. Chem.
Asian J. 2011, 6, 2670. (f) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev.
2010, 39, 1302.
(4) (a) Wentrup, C. Chem. Rev. 2017, 117, 4562. (b) Gras, E.;
Chassaing, S. In Organic Reaction Mechanisms, 2013; Knipe, A. C.,
Ed.; Wiley: Chichester, 2016, 177. (c) Shin, K.; Kim, H.; Chang, S.
Acc. Chem. Res. 2015, 48, 1040. (d) Gras, E.; Chassaing, S. In
Organic Reaction Mechanisms, 2012; Knipe, A. C., Ed.; Wiley:
Chichester, 2015, 171. (e) Intrieri, D.; Zardi, P.; Caselli, A.; Gallo,
E. Chem. Commun. 2014, 50, 11440. (f) Gras, E.; Chassaing, S. In
Organic Reaction Mechanisms, 2011; Knipe, A. C., Ed.; Wiley:
Chichester, 2014, 199. (g) Jewett, J. C.; Bertozzi, C. R. Chem. Soc.
Rev. 2010, 39, 1272. (h) Lang, S.; Murphy, J. A. Chem. Soc. Rev.
2006, 35, 146. (i) Lang, S.; Murphy, J. A. ACS Chem. Biol. 2006, 1,
644. (j) Abraham, H.-W. In Synthetic Organic Photochemistry;
Griesbeck, A. G.; Mattay, J., Eds.; Marcel Dekker: New York,
2004, 391. (k) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V.
Angew. Chem. Int. Ed. 2005, 44, 5188. (l) Scriven, E. F. V.;
Turnbull, K. Chem. Rev. 1988, 88, 297. (m) L’abbe, G. Chem. Rev.
1969, 69, 345.
(5) For examples of bioactive indole-based compounds, see:
(a) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat. Prod. Rep.
2015, 32, 1389. (b) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S.
Nat. Prod. Rep. 2013, 30, 694. (c) Ishikura, M.; Yamada, K.; Abe,
T. Nat. Prod. Rep. 2010, 27, 1630. (d) Kochanowska-Karamyan, A.
J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489.
(6) For examples of bioactive quinoline-based compounds, see:
(a) Froehlich, T.; Tsogoeva, S. B. J. Med. Chem. 2016, 59, 9668.
(b) Hussaini, S. M. A. Exp. Opin. Ther. Pat. 2016, 26, 1201.
(c) Afzal, O.; Kumar, S.; Haider, M. R.; Kumar, R.; Jaggi, M.; Bawa,
S. Eur. J. Med. Chem. 2015, 97, 871. (d) Vandekerckhove, S.;
D’hooghe, M. Bioorg. Med. Chem. 2015, 23, 5098. (e) Prajapati, S.
M.; Patel, K. D.; Vekariya, R. H.; Panchal, S. N.; Patel, H. D. RSC
Adv. 2014, 4, 24463. (f) Kumar, S.; Bawa, S.; Gupta, H. Mini-Rev.
Med. Chem. 2009, 9, 1648.
(10) (a) Chaabouni, S.; Simonet, F.; François, A.; Abid, S.; Galaup, C.;
Chassaing, S. Eur. J. Org. Chem. 2017, 271. (b) Veau, D.; Krykun,
S.; Mori, G.; Orena, B. S.; Pasca, M. R.; Frongia, C.; Lobjois, V.;
Chassaing, S.; Lherbet, C.; Baltas, M. ChemMedChem 2016, 11,
1078.
(11) For details on methods for preparing cinnamoylated azides 1a–k
from commercially available ortho-nitrobenzaldehydes, see the
Supporting Information.
(12) The bench-top light source we used was the LUMOS 43® mar-
keted by Atlas Photonics.
(13) In spite of the crude products giving clean 1H NMR spectra, the
fact that the yields are not higher could be explained by the for-
mation of polymeric by-products due to rearrangement pro-
cesses involving the highly reactive nitrene.
(14) For representative examples dealing with photoaffinity labeling
using azides, see: (a) Lord, S. J.; Lee, H.-L.; Samuel, R.; Weber, R.;
Liu, N.; Conley, N. R.; Thompson, M. A.; Twoeg, R. J.; Moerner,
W. E. J. Phys. Chem. B 2010, 114, 14157. (b) Voskresenska, V.;
Wilson, R. M.; Panov, M.; Tarnovsky, A. N.; Krause, J. A.; Vyas, S.;
Winter, A. H.; Hadad, C. M. J. Am. Chem. Soc. 2009, 131, 11535.
(c) Cline, M. R.; Mandel, S. M.; Platz, M. S. Biochemistry 2007, 46,
1981. (d) Chehade, K. A. H.; Spielmann, H. P. J. Org. Chem. 2000,
65, 4949.
(15) Typical Procedure: In a quartz tube under argon were succes-
sively added ortho-azidocinnamoyl derivative 1a–k and the
appropriate solvent to give a concentration of 3.2 mM. The
resulting mixture was then irradiated using either the LUMOS
43® (1.5 h stirring time with CH2Cl2 as solvent) or a conven-
tional tungsten lamp [6 h stirring time with EtOH–H2O (1:1) as
solvent], as light sources. After evaporation of the solvent, puri-
fication of the crude product by column chromatography,
eluting with an appropriate cyclohexane–EtOAc mixture, fur-
nished the desired photocyclized products 2a–k or 3/4 in pure
form.
(16) Analytical Data for 2,3-Diacetyl-6-N,N-dimethylamino-1H-
indole (2k, Scheme 2): Orange solid; mp 176–179 °C; Rf 0.40
(cyclohexane–EtOAc, 70:30). FTIR (ATR, neat): 3322, 2921, 1670
(C=O), 1311 cm–1. 1H NMR (300 MHz, CDCl3): δ = 9.30 (br s, 1 H,
NH), 7.65 (d, J = 9.2 Hz, 1 H), 6.87 (dd, J = 2.3, 9.2 Hz, 1 H), 6.53
(d, J = 2.3 Hz, 1 H), 3.02 (s, 6 H), 2.76 (s, 3 H), 2.62 (s, 3 H). 13C
NMR (75 MHz, CDCl3): δ = 197.8, 191.4, 150.0, 137.3, 132.4,
122.6, 122.1, 117.9, 112.2, 92.4, 40.8, 32.1, 28.7. MS (DCI, +):
m/z (%) = 245 (100) [M + H]+. HRMS (DCI, +): m/z [M + H]+ calcd
for C14H17N2O2: 245.1290; found: 245.1289.
(7) (a) Kong, C.; Jana, N.; Jones, C.; Driver, T. G. J. Am. Chem. Soc.
2016, 138, 13271. (b) Alt, I. T.; Plietker, B. Angew. Chem. Int. Ed.
2016, 55, 1519. (c) Goriya, Y.; Ramana, C. V. Chem. Commun.
2014, 50, 7790. (d) Stokes, B. J.; Liu, S.; Driver, T. G. J. Am. Chem.
Soc. 2011, 133, 4702. (e) Liu, Y.; Wei, J.; Che, C.-M. Chem.
Commun. 2010, 46, 6926.
(8) (a) Li, Z.; Wang, W.; Zhang, X.; Hu, C.; Zhang, W. Synlett 2013,
24, 73. (b) Gairns, R. S.; Moody, C. J.; Rees, C. W. J. Chem. Soc.,
Perkin Trans. 1 1986, 501.
(9) For synthetic methods towards quinolines involving imino-
phosphoranes as alternative intermediates, see: (a) Kim, H. J.;
Jeong, E. M.; Lee, K.-J. J. Heterocycl. Chem. 2011, 48, 965. (b) Han,
E.-G.; Kim, H. J.; Lee, K.-J. Tetrahedron 2009, 65, 9616.
(c) Luheshi, A.-B. N.; Salem, S. M.; Smalley, R. K.; Kennewell, P.
D.; Westwood, R. Tetrahedron Lett. 1990, 31, 6561.
(17) Analytical Data for 2-Methyl-3-acetyl-7-N,N-dimethylami-
noquinoline (3k, Scheme 3): Orange-red solid; mp 118–
121 °C; Rf 0.23 (cyclohexane–EtOAc, 70:30). FTIR (ATR, neat):
2925, 1666 (C=O), 1616, 1511, 1422 cm–1 1H NMR (300 MHz,
.
CDCl3): δ = 8.34 (s, 1 H), 7.66 (d, J = 9.0 Hz, 1 H), 7.12 (dd, J = 2.5,
9.0 Hz, 1 H), 7.05 (d, J = 2.5 Hz, 1 H), 3.13 (s, 6 H), 2.88 (s, 3 H),
2.65 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 198.9, 158.9, 152.9,
150.3, 138.7, 129.4, 126.4, 117.7, 115.6, 105.6, 40.3, 28.7, 26.2.
MS (DCI, +): m/z (%) = 229 (100) [M + H]+. HRMS (DCI, +):
m/z [M + H]+ calcd for C14H17N2O: 229.1341; found: 229.1347.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E