6716
T. Yamagishi et al. / Tetrahedron Letters 45 (2004) 6713–6716
11a–e with those reported,19 the absolute stereochemis-
try of 11a–e was determined to be R configuration.
P.; Albrycht, M.; Luczak, J.; Mikolajczyk, M. Tetrahe-
dron: Asymmetry 2002, 13, 735.
10. Shioji, K.; Tashiro, A.; Shibata, S.; Okuma, K. Tetrahe-
dron Lett. 2003, 44, 1103.
11. Baylis, E. K. Tetrahedron Lett. 1995, 36, 9385.
12. Yamagishi, T.; Kusano, T.; Kaboudin, B.; Yokomatsu,
T.; Sakuma, C.; Shibuya, S. Tetrahedron 2003, 59, 767.
13. Han, L.-B.; Zhao, C.-Q.; Onozawa, S.; Goto, M.; Tanaka,
M. J. Am. Chem. Soc. 2002, 124, 3842.
In conclusion, we have developed a new method for pre-
paring chiral a-hydroxy-H-phosphinates through lipase-
catalyzed hydrolysis of the corresponding racemic
acetates. From a mixture of four kinds of stereoisomers
of a-acetoxy-H-phosphinates, one isomer of a-hydroxy-
H-phosphinates was obtained selectively.
14. No by-products were detected by 1H and 31P NMR
analysis of the crude recovered starting materials. Thus,
low yield of recovered (R*,RP*)-3a might be associated
with partial hydrolysis of their phosphinate moiety in the
reaction mixture.
Acknowledgements
15. Lipase PS-catalyzed hydrolysis reaction of (R*,SP*)-3a
(512mg, 2mmol) gave the corresponding crude products
(378mg) and performing silica gel column chromatogra-
phy afforded (R,SP)-10a (77mg, 0.36mmol) and (S,RP)-3a
(171mg, 0.66mmol). It was apparent that the amount
yield of (R,SP)-10a and (S,RP)-3a was relatively low
compared to that of crude products. Any by-products
were not detected by 1H and 31P NMR analysis of the
corresponding crude materials. Thus, low chemical yields
of (R,SP)-10a and (S,RP)-3a might be associated with both
loss at the purification step and partial hydrolysis of their
This work was partially supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Cul-
ture, Sports, Science, and Technology, Japan. We are
also grateful to Amano Pharmaceutical Co., Ltd for
providing lipase PS, AY-30, AS, and F-AP 15.
References and notes
1. (a) Martin, M. T.; Angeles, T. S.; Sugasawara, R.; Aman,
N. I.; Napper, A. D.; Darsley, M. J.; Sanchez, R. I.;
Booth, P.; Titmas, R. C. J. Am. Chem. Soc. 1994, 116,
6508; (b) Li, T.; Janda, K. D. Bioorg. Med. Chem. Lett.
1995, 5, 2001.
´ ´
2. For a review, see: Collinsova, M.; Jiracek, J. Curr. Med.
Chem. 2000, 7, 629.
3. Froestl, W.; Mickel, S. J.; Sprecher, G.; Diel, P. J.; Hall,
R. G.; Maier, L.; Strub, D.; Melillo, V.; Baumann, P. A.;
Bernasconi, R.; Gentsch, C.; Hauser, K.; Jaekel, J.;
phosphinate moiety in the reaction mixture.
20
16. Compound (R,SP)-10a: an oil; ½a þ59:4 (c 1.4, CHCl3);
D
1H NMR (400MHz, CDCl3): d 7.32–7.30 (2H, m), 7.21–
7.19 (2H, m), 6.90 (1H, d, J = 532.6Hz), 4.92 (1H, s),
4.17–4.10 (2H, m), 2.35 (3H, s), 1.32 (3H, t, J = 7.0Hz);
31P NMR (162MHz, CDCl3): d 33.38; IR (neat) 3227,
1201cmꢀ1; ESIMS m/z 215 (MH+). HRMS calcd for
C10H16O3P (MH+): 215.0837; found: 215.0833. Com-
20
pound (R,SP)-3a: an oil; ½a ꢀ 43:0 (c 1.4, CHCl3); 1H
ˆ
Karlsson, G.; Klebs, K.; Maıtre, L.; Marescaux, C.;
NMR (400MHz, CDCl3): d D7.32–7.30 (2H, m), 7.22–7.20
(2H, m), 7.07 (1H, d, J = 571.4Hz), 6.01 (1H, d,
J = 9.0Hz), 4.13–4.04 (2H, m), 2.35 (3H, s), 1.28 (3H, t,
J = 7.0Hz); 31P NMR (162MHz, CDCl3): d 27.58; IR
(neat) 1751, 1226cmꢀ1; ESIMS m/z 279 (MNa+). HRMS
calcd for C12H17O4NaP (MNa+): 279.0762; found:
279.0773.
Pozza, M. F.; Schmutz, M.; Steinmann, M. W.; Riezen,
H.; Vassout, A.; Mondadori, C.; Olpe, H.-R.; Waldmeier,
P. C.; Bittiger, H. J. Med. Chem. 1995, 38, 3313.
4. Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E.; Free, C. A.;
Rogers, W. L.; Smith, S. A.; DeForrest, J. M.; Oehl, R. S.;
Petrillo, E. W., Jr. J. Med. Chem. 1995, 38, 4557.
5. Stowasser, B.; Budt, K.-H.; Jian-Qi, L.; Peyman, A.;
Ruppert, D. Tetrahedron Lett. 1992, 33, 6625.
6. (a) Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E.
Tetrahedron Lett. 1990, 31, 5591; (b) Gallagher, M. J.;
Ranasinghe, M. G.; Jenkins, I. D. J. Org. Chem. 1996, 61,
436; (c) Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Heteroat.
Chem. 2003, 14, 312.
7. (a) Arai, T.; Bougauchi, M.; Sasai, H.; Shibasaki, M. J.
Org. Chem. 1996, 61, 2926; (b) Arai, T.; Sasai, H.; Aoe,
K.; Okamura, K.; Date, T.; Shibasaki, M. Angew. Chem.
Int. Ed. Engl. 1996, 35, 104; (c) Yamada, K.; Arai, T.;
Sasai, H.; Shibasaki, M. J. Org. Chem. 1998, 63, 3666; (d)
Xu, Y.; Ohori, K.; Ohshima, T.; Shibasaki, M. Tetrahe-
dron 2002, 58, 2585.
17. We also examined reactions of 3b with other enzymes such
as lipase AY-30 (Candida rugosa), lipase AS (Aspergillus
nieger), lipase F-AP 15 (Rhizopus oryzae). While the
desired reaction did not proceed in the presence of lipase
AY-30, employing lipase AS gave the hydrolysis product
(36% yield) as a mixture of diastereomers (1:2.1). The
reaction in the presence of lipase F-AP 15 provided the
product as a diastereomixture (1:2.4) in low yield (5%).
Thus, lipase PS proved to be the optimum enzyme among
those examined for resolving a-hydroxy-H-phosphinates.
18. Albouy, D.; Brun, A.; Munoz, A.; Etemad-Moghadam,
G. J. Org. Chem. 1995, 60, 6656.
19. (a) Drescher, M.; Li, Y.-F.; Hammerschmidt, F. Tetrahe-
dron 1995, 51, 4933; (b) Drescher, M.; Hammerschmidt,
F.; Ka¨hlig, H. Synthesis 1995, 1267; (c) Yokomatsu, T.;
Yamagishi, T.; Shibuya, S. J. Chem. Soc., Perkin Trans. 1
1997, 1527; (d) Qian, C.; Huang, T.; Zhu, C.; Sun, J. J.
Chem. Soc., Perkin Trans. 1 1998, 2097.
8. Yamagishi, T.; Yokomatsu, T.; Suemune, K.; Shibuya, S.
Tetrahedron 1999, 55, 12125.
9. (a) Kielbasinski, P.; Omelanczuk, J.; Mikolajczyk, M.
Tetrahedron: Asymmetry 1998, 9, 3283; (b) Kielbasinski,