C O M M U N I C A T I O N S
Table 2. One-Pot Methylenation-Ring Closing Metathesis
Reaction
In conclusion, we have devised a series of one-pot procedures
that combined various transition metal catalysts to achieve a highly
efficient synthesis of alkenes from alcohols.
Acknowledgment. This research was supported by NSERC
(Canada), the Canadian Foundation for Innovation, Boehringer
Ingelheim (Canada) Lte´e, Merck Frosst Canada, and the Universite´
de Montre´al. V.P. thanks Boehringer Ingelheim (Canada) Lte´e for
a graduate scholarship.
Supporting Information Available: Characterization data for new
compounds and experimental procedures. This material is available free
References
(1) For recent reviews: (a) Soderberg, B. C. G. Coord. Chem. ReV. 2003,
241, 147-247. (b) Haughton, L.; Williams, J. M. J. J. Chem. Soc., Perkin
Trans. 1 2000, 3335-3349.
(2) Bruggink, A.; Schoevaart, R.; Kieboom, T. Org. Process Res. DeV. 2003,
7, 622-640.
(3) (a) Ostaszewski, R.; Portlock, D. E.; Fryszkowska, A.; Jeziorska, K. Pure
Appl. Chem. 2003, 75, 413-419. (b) Schoemaker, H. E.; Mink, D.;
Wubbolts, M. G. Science 2003, 299, 1694-1698. (c) Koeller, K. M.;
Wong, C. H. Nature 2001, 409, 232-240. (d) Carrea, G.; Riva, S. Angew.
Chem., Int. Ed. 2000, 39, 2226-2254. (e) Koeller, K. M.; Wong, C. H.
Chem. ReV. 2000, 100, 4465-4493.
(4) Recent reviews: (a) Pamies, O.; Backvall, J. E. Chem. ReV. 2003, 103,
3247-3261. Selected examples: (b) Persson, B. A.; Larsson, A. L. E.;
Le Ray, M.; Backvall, J. E. J. Am. Chem. Soc. 1999, 121, 1645-1650.
(c) Larsson, A. L. E.; Persson, B. A.; Backvall, J. E. Angew. Chem., Int.
Ed. 1997, 36, 1211-1212. (d) Reetz, M. T.; Schimossek, K. Chimia 1996,
50, 668-669. (e) Dinh, P. M.; Howarth, J. A.; Hudnott, A. R.; Williams,
J. M. J.; Harris, W. Tetrahedron Lett. 1996, 37, 7623-7626.
(5) Review: (a) Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. ReV.
2004, 33, 302-312. A few examples have recently appeared in the
litterature: (b) Siebeneicher, H.; Bytschkov, I.; Doye, S. Angew. Chem.,
Int. Ed. 2003, 42, 3042-3044. (c) Nishibayashi, Y.; Yoshikawa, M.; Inada,
Y.; Milton, M. D.; Hidai, M.; Uemura, S. Angew. Chem., Int. Ed. 2003,
42, 2681-2684. (d) Cossy, J.; Bargiggia, F.; BouzBouz, S. Org. Lett.
2003, 5, 459-462. (e) Ko, S.; Lee, C.; Choi, M. G.; Na, Y.; Chang, S. J.
Org. Chem. 2002, 68, 1607-1610.
(6) Processes in which the first intermediate is spontaneously converted to
another product: (a) Catellani, M. Synlett 2003, 298-313. (b) McCarroll,
A. J.; Walton, J. C. J. Chem. Soc., Perkin Trans. 1 2001, 3215-3229. (c)
Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. ReV. 1996, 96, 195-
206. (d) Tietze, L. F. Chem. ReV. 1996, 96, 115-136.
(7) Selected references: (a) Bressette, A. R.; Glover, L. C. Synlett 2004, 738-
740. (b) Reid, M.; Rowe, D. J.; Taylor, R. J. K. Chem. Commun. 2003,
2284-2285. (c) Blackburn, L.; Kanno, H.; Taylor, R. J. K. Tetrahedron
Lett. 2003, 44, 115-118. (d) MacCoss, R. N.; Balskus, E. P.; Ley, S. V.
Tetrahedron Lett. 2003, 44, 7779-7781. See Supporting Information for
other ref.
a Conditions A: PPh3; additive ) AlCl3. B: DPPBE (17); additive )
b
c
d
oxone. C: Step-by-step approach. Isolated yield. Ref 17. Ref 18.
ruthenium metathesis catalyst and the phosphine residues. After
optimization (see Supporting Information for details), we devised
two sets of reaction conditions that allowed the conversion of
carbonyl compounds into cyclic alkenes (Table 2). To avoid the
inhibition of the metathesis reaction by phosphine residues,14 either
oxone (an oxidant) or aluminum trichloride (a Lewis acid) was used
as an additive with, respectively, DPPBE15 or triphenylphosphine.
Here again, no deleterious interaction between both catalysts was
observed during the metathesis reaction when we used the second-
generation ruthenium metathesis complex.16 In the case of a
monomethylenation reaction of either a ketone or aldehyde,
followed by the metathesis reaction, higher yields were observed
for the one-pot procedure, compared to the step-by-step approach
(entries 1 and 2 vs 3; 7 and 8 vs 9; 10 and 11 vs 12). When a
double-methylenation reaction was carried out, followed by the ring-
closing metathesis reaction, similar yields were observed for the
one-pot cascade vs the stepwise procedure (entries 4-6). Those
one-pot reaction conditions are compatible with the formation of
five-, six-,17 and seven-membered18 cyclic alkenes.
(8) Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S. Angew. Chem.,
Int. Ed. 2003, 42, 3810-3813.
(9) (a) Lebel, H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 320-328. (b)
Lebel, H.; Paquet, V. Organometallics 2004, 23, 1187-1190. (c) Lebel,
H.; Paquet, V. Org. Lett. 2002, 4, 1671-1674. (d) Grasa, G. A.; Moore,
Z.; Martin, K. L.; Stevens, E. D.; Nolan, S. P.; Paquet, V.; Lebel, H. J.
Organomet. Chem. 2002, 658, 126-131. (e) Lebel, H.; Paquet, V.; Proulx,
C. Angew. Chem., Int. Ed. 2001, 40, 2887-2890.
(10) Methylenation of ketones: Lebel, H.; Guay, D.; Paquet, V.; Huard, K.
Org. Lett. 2004, 6, 3047-3050.
(11) See Supporting Information for the structure of catalyst 1 (ref 8).
(12) (a) Grubbs, R. H. AdV. Synth. Catal. 2002, 344, 569-569. (b) Furstner,
A.; Ackermann, L.; Gabor, B.; Goddard, R.; Lehmann, C. W.; Mynott,
R.; Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001, 7, 3236-3253.
(13) Stoichiometric olefination-metathesis processes are known with the Tebbe
reagent: (a) Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108,
855-856. (b) Stille, J. R.; Santarsiero, B. D.; Grubbs, R. H. J. Org. Chem.
1990, 55, 843-862. (c) Nicolaou, K. C.; Postema, M. H. D.; Yue, E. W.;
Nadin, A. J. Am. Chem. Soc. 1996, 118, 10335-10336.
(14) (a) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T. E.; Scholl,
M.; Choi, T. L.; Ding, S.; Day, M. W.; Grubbs, R. H. J. Am. Chem. Soc.
2003, 125, 2546-2558. (b) Love, J. A.; Sanford, M. S.; Day, M. W.;
Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 10103-10109. (c) Sanford,
M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 749-
750. (d) Morgan, J. P.; Grubbs, R. H. Org. Lett. 2000, 2, 3153-3155.
(15) Yoakim, C.; Guse, I.; O’Meara, J. A.; Thavonekham, B. Synlett 2003,
473-476. See Supporting Information for the structure of the DPPBE
phosphine 17.
We then combined the two one-pot procedures to devise a three-
reaction cascade that requires three different catalysts. The alcohol
13 was submitted to the palladium-catalyzed oxidation reaction
conditions, followed by the rhodium-catalyzed methylenation and
the ruthenium-catalyzed ring-closing metathesis reaction to provide
the cyclic alkene 19 with 70% yield, which indicated roughly 90%
yield for each individual steps (eq 1). It is remarkable that at the
end of the reaction, three different transition metal catalysts were
in the reaction mixture and did not interfere with the metathesis
reaction.
(16) (a) Jafarpour, L.; Hillier, A. C.; Nolan, S. P. Organometallics 2002, 21,
442-444. See Supporting Info for the structure of catalyst 16.
(17) Chang, S. B.; Grubbs, R. H. J. Org. Chem. 1998, 63, 864-866.
(18) Kahnberg, P.; Lee, C. W.; Grubbs, R. H.; Sterner, O. Tetrahedron 2002,
58, 5203-5208.
JA0472681
9
J. AM. CHEM. SOC. VOL. 126, NO. 36, 2004 11153