854
J.-C. Lee et al. / Tetrahedron Letters 43 (2002) 851–855
atmosphere. The amount of acetic anhydride and reac-
tion time are listed in Tables 1 and 2. After the reaction
is done, methanol was added to quench the rest of
acetic anhydride, and the whole solution was kept
stirring at room temperature for another 0.5 h. The
resulting mixture was concentrated in vacuo to remove
methyl acetate and acetic acid, and the residue was
dissolved in ethyl acetate followed by sequential wash
with saturated sodium bicarbonate aqueous solution,
water, as well as brine. The organic phase was dried
over magnesium sulfate, filtered and concentrated in
vacuo to afford the expected product in excellent yield.
Kiessling, L. L. Tetrahedron Lett. 1994, 35, 7335–7338;
(g) Yamanoi, T.; Iwai, Y.; Inazu, T. J. Carbohydr. Chem.
1998, 17, 819–822; (h) Inanaga, J.; Yokoyama, Y.;
Hanamoto, T. Tetrahedron Lett. 1993, 34, 2791–2794.
12. (a) Kobayashi, S.; Sugita, K.; Oyamada, H. Synlett 1999,
138–140; (b) Aggarwal, V. K.; Vennall, G. P. Tetrahedron
Lett. 1996, 37, 3745–3746; (c) Yadav, J. S.; Reddy, B. V.
S.; Srihari, P. Synlett 2001, 673–675; (d) Aggarwal, V. K.;
Vennall, G. P. Synthesis 1998, 1822–1826.
13. Yang, Y.; Wang, D. Synlett 1997, 1379–1380.
14. (a) Ishihara, K.; Karumi, Y.; Kubota, M.; Yamamoto,
H. Synlett 1996, 839–841; (b) Fukuzawa, S.-I.; Tsuchi-
moto, T.; Hotaka, T.; Hiyama, T. Synlett 1995, 1077–
1078; (c) Porwanski, S.; Salanski, P.; Descotes, G.;
Bouchu, A.; Queneau, Y. Synthesis 2000, 525–528; (d)
Aggarwal, V. K.; Fonquerna, S.; Vennall, G. P. Synlett
1998, 849–850; (e) Muthusamy, S.; Babu, S. A.;
Gunanathan, C. Tetrahedron Lett. 2001, 42, 359–362.
15. (a) Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto,
H. J. Am. Chem. Soc. 1995, 117, 4413–4414; (b) Ishihara,
K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org.
Chem. 1996, 61, 4560–4567; (c) Chauhan, K. K.; Frost,
C. G.; Love, I.; Waite, D. Synlett 1999, 1743–1744; (d)
Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. Angew.
Chem., Int. Ed. Engl. 2000, 39, 2877–2879; (e) Greenwald,
R. B.; Pendri, A.; Zhao, H. Tetrahedron: Asymmetry
1998, 9, 915–918; (f) Zhao, H.; Pendri, A.; Greenwald, R.
B. J. Org. Chem. 1998, 63, 7559–7562.
16. (a) Kajiro, H.; Mitamura, S.; Mori, A.; Hiyama, T.
Tetrahedron Lett. 1999, 40, 1689–1692; (b) Sharma, G. V.
M.; Ilangovan, A. Synlett 1999, 1963–1965.
17. (a) Loh, T.-P.; Hu, Q.-Y.; Ma, L.-T. J. Am. Chem. Soc.
2001, 123, 2450–2451; (b) Sharma, G. V. M.; Ilangovan,
A.; Mahalingam, A. K. J. Org. Chem. 1998, 63, 9103–
9104; (c) Sharma, G. V. M.; Mahalingam, A. K. J. Org.
Chem. 1999, 64, 8943–8944; (d) Orita, A.; Nagano, Y.;
Nakazawa, K.; Otera, J. Synlett 2000, 599–602.
Acknowledgements
We thank Professor Chun-Chen Liao for his helpful
discussions and the National Science Council of Repub-
lic of China for financial support.
References
1. (a) Hung, S.-C.; Thopate, S. R.; Chi, F.-C.; Chang,
S.-W.; Lee, J.-C.; Wang, C.-C.; Wen, Y.-S. J. Am. Chem.
Soc. 2001, 123, 3153–3154; (b) Hung, S.-C.; Wang, C.-C.;
Chang, S.-W.; Chen, C.-S. Tetrahedron Lett. 2001, 42,
1321–1324; (c) Zottola, M. A.; Alonso, R.; Vite, G. D.;
Fraser-Reid, B. J. Org. Chem. 1989, 54, 6123–6125; (d)
Paulsen, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 155–
173.
2. Nishida, Y.; Takamori, Y.; Matsuda, K.; Ohrui, H.;
Yamada, T.; Kobayashi, K. J. Carbohydr. Chem. 1999,
18, 985–997.
3. Zottola, M.; Rao, B. V.; Fraser-Reid, B. J. Chem. Soc.,
Chem. Commun. 1991, 969–970.
4. Kobayashi, S. Eur. J. Org. Chem. 1999, 15–27.
5. Kobayashi, S.; Hachiya, I.; Araki, M.; Ishitani, H. Tetra-
hedron Lett. 1993, 34, 3755–3758.
18. The spectral data of our compounds corroborated well
with the reported ones. The selected physical data of new
1
compounds is listed. Compound 12: H NMR (400 MHz,
6. (a) Crotti, P.; Bussolo, V. D.; Favero, L.; Pineschi, M.;
Pasero, M. J. Org. Chem. 1996, 61, 9548–9552; (b)
Fukuzawa, S.; Tsuchimoto, T.; Kanai, T. Bull. Chem.
Soc. Jpn. 1994, 67, 2227–2232.
CDCl3) l 8.15–8.12 (m, 1.9H, ArH), 8.10–8.07 (m, 3.0H,
ArH), 7.63–7.58 (m, 2.4H, ArH), 7.49–7.44 (m, 5.3H,
ArH), 7.41–7.34 (m, 12.3H, ArH), 6.23 (s, 1.4H), 6.21 (d,
J=1.7 Hz, 1.0H), 5.31 (ddd, J=3.2, 1.6, 0.8 Hz, 0.9H),
5.22 (dt, J=2.4, 1.2 Hz, 1.5H), 5.00 (ddd, J=2.8, 1.9, 0.8
Hz, 1.5H), 4.94 (ddd, J=2.8, 1.9, 0.8 Hz, 1.0H), 4.83 (d,
J=11.8 Hz, 1.7H), 4.79–4.74 (m, 3.6H), 4.62 (dt, J=6.5,
1.7 Hz, 1.5H), 4.47 (ddd, J=7.3, 5.4, 1.9 Hz, 1.0H),
4.33–4.22 (m, 5.4H), 4.01 (t, J=3.0 Hz, 1.0H), 3.92–3.91
(m, 1.5H), 2.11 (s, 5.2H), 2.07 (d, J=0.6 Hz, 11.5H), 1.94
(s, 5.0H), 1.93 (s, 2.8H). 13C NMR (100 MHz, CDCl3) l
170.46 (C), 169.92 (C), 168.79 (C), 168.60 (C), 165.32 (C),
164.83 (C), 137.33 (C), 136.80 (C), 133.61 (CH), 133.45
(CH), 129.86 (CH), 129.77 (CH), 129.33 (C), 129.06 (C),
128.50 (CH), 128.41 (CH), 128.35 (CH), 128.13 (CH),
127.86 (CH), 127.73 (CH), 127.40 (CH), 91.31 (CH),
90.36 (CH), 73.52 (CH), 72.99 (CH2), 72.32 (CH2), 71.85
(CH), 71.67 (CH), 66.72 (CH), 66.30 (CH), 66.07 (CH),
65.87 (CH), 65.54 (CH), 62.23 (CH2), 62.17 (CH2), 20.85
(CH3), 20.76 (CH3), 20.65 (CH3), 20.58 (CH3), 20.55
(CH3). Compound 13: 1H NMR (400 MHz, CDCl3) l
8.09–8.05 (m, 4.9H, ArH), 7.63–7.59 (m, 2.3H, ArH),
7.49–7.45 (m, 5.2H, ArH), 7.40–7.31 (m, 12.2H, ArH),
7. Kobayashi, S.; Hachiya, I.; Ishitani, H.; Araki, M. Syn-
lett 1993, 472–474.
8. (a) Yadav, J. S.; Reddy, B. V. S.; Murthy, C. V. S. R.;
Kumar, G. M. Synlett 2000, 1450–1451; (b) Yadav, J. S.;
Reddy, B. V. S.; Chand, P. K. Tetrahedron Lett. 2001, 42,
4057–4059; (c) Takhi, M.; Abdel Rahman, A. A.-H.;
Schmidt, R. R. Tetrahedron Lett. 2001, 42, 4053–4056.
9. Qian, C.; Huang, T. Tetrahedron Lett. 1997, 38, 6721–
6724.
10. Kawada, A.; Mitamura, S.; Kobayashi, S. Synlett 1994,
545–546.
11. (a) Adinolfi, M.; Barone, G.; Guariniello, L.; Iadonisi, A.
Tetrahedron Lett. 2000, 41, 9005–9008; (b) Takhi, M.;
Abdel Rahman, A. A.-H.; Schmidt, R. R. Synlett 2001,
427–429; (c) Chang, G. X.; Lowary, T. L. Org. Lett.
2000, 2, 1505–1508; (d) Hosono, S.; Kim, W.-S.; Sasai,
H.; Shibasaki, M. J. Org. Chem. 1995, 60, 4–5; (e)
Inanaga, J.; Yokoyama, Y.; Hanamoto, T. J. Chem. Soc.,
Chem. Commun. 1993, 1090–1091; (f) Sanders, W. J.;