10
Tetrahedron
ACCEPTED MANUSCRIPT
12. Jacobi, P. A.; Brielmann, H. L.; Hauck, S. I. J. Org. Chem. 1996, 61,
filtered through Celite and then filtrate was concentrated
5013-5023.
under vacuum. The crude product obtained was re-crystallized
from the mixture of IPA-MTBE (1:4) (100 mL) to afford
compound 3 as an off-white colored solid (5.3 g, 70% overall
yield from 29, ee by chiral HPLC analysis >99%). MP: 162-164
°C; νmax (CHCl3, cm-1): 2564, 1759, 1540, 1267, 1214, 1029; δH
(400 MHz, DMSO-d6): δ 9.81 (brs, 1H), 4.13 (d, J = 1.6 Hz, 1H),
3.79 (s, 3H), 3.61-3.57 (m, 1H), 3.03 (dd, J = 10.8 Hz, J = 2 Hz,
1H), 1.90-1.87 (m, 1H), 1.78-1.74 (m, 1H), 1.07 (s, 3H), 1.04 (s,
3H); δC (100 MHz, CD3OD): 170.1, 61.4, 54.3, 47.2, 34.4, 30.7,
26.2, 23.5, 14.0; HRMS (ESI-MS): MH+, found: 170.1182,
C9H16NO2 requires 170.1181. Determination of the chiral purity
of the product was carried out by chiral HPLC analysis [Column:
Chiralpak-IC, 250ꢀ4.6 mm, 5 ꢀm particle size; Eluent: 0.05%
diethylamine in 9:1 n-hexane-ethanol; Flow rate: 0.6 mL/min;
UV detection at 210 nm; retention times for 3 and ent-3 were
18.3 and 13.7 minutes respectively]. Enantiomeric excess of 3 in
the product was >99%.
13. Yamagishi, M.; Nishigai, K.; Hata, T.; Urabe, H. Org. Lett. 2011, 13,
4873–4875.
14. Klemmensen, P. D.; Kolind-Andersen, H.; Madsen, H. B.; Svendsen,
A. J. Org. Chem. 1979, 44, 416–420.
15. (a) Tian, H.; Ermolenko, L.; Gabant, M.; Vergne, C.; Moriou, C.;
Retailleau, P.; Al-Mourabit, A. Adv. Synth. Catal. 2011, 353, 1525–
1533; (b) Gramain, J.-C.; Remuson, R.; Troin, Y. J. Chem. Soc.,
Chem. Commun. 1976, 194-195.
16. Determination of substrate conversion and chiral purity of 19 (either
as a product of hydrolysis or as the unreacted ethyl ester) was
concomitantly carried out by chiral HPLC analysis [Column:
Chiralpak AS-RH, 150ꢀ4.6 mm, 5 ꢀm particle size; Mobile phase
A: 0.1 % trifluoroacetic acid in water; Mobile phase B: 0.1 %
trifluoroacetic acid in acetonitrile; Time/%B: 0/40, 8/60, 8.01/40,
12/40; Flow rate: 1.0 mL/min; UV detection at 210 nm; retention
times for 19 and ent-19 were 5.15 and 5.51 minutes respectively;
retention times for the ethyl esters of 19 and ent-19 were 9.89 and
10.23 minutes respectively].
17. Wallace, D. In The Art of Process Chemistry; Yasuda, N., Ed.;
WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2011; pp.
256-257.
18. While an exact mechanism for the formation of 35 may be difficult
to speculate within the ambit of the present endeavour, instances of
competing enamine reduction during hydroboration-oxidation
reactions are known in the literature; see: (a) Barieux, J.-J.; Gore, J.
Tetrahedron 1972, 28, 1537-1553; (b) Barieux, J.-J.; Gore, J.
Tetrahedron 1972, 28, 1555-1563.
Acknowledgments
We thank Prof. Goverdhan Mehta for his critical comments and
collaboration.
19. (a) Brown, H. C.; Chen, J. J. Org. Chem. 1981, 46, 3978-3988; (b)
Brown, H. C.; Sharp, R. L. J. Am. Chem. Soc. 1968, 90, 2915–2927;
(c) Pasto, D. J.; Hickman, J. J. Am. Chem. Soc. 1967, 89, 5608–
5615.
20. Guercio, G.; Manzo, A. M.; Goodyear, M.; Bacchi, S.; Curti, S.;
Provera, S. Org. Process Res. Dev. 2009, 13, 489–493.
21. McKennon, M. J.; Meyers, A. I.; Drauz, K.; Schwarm, M. J. Org.
Chem. 1993, 58, 3568-3578.
22. Dharanipragada, R.; Alarcon, A.; Hruby, V. J. Org. Prep. Proc. Int.
1991, 23, 396-397.
References and notes
1.
2.
3.
(a) Schlütter, J. Ling, Nature 2011, 474, S5–S7; (b) Ghany, M. G.;
Nelson, D. R.; Strader, D. B.; Thomas, D. L.; Seeff, L. B.
Hepatology 2011, 54, 1433–1444.
World Health Organization (WHO). Hepatitis C. Fact Sheet No. 164.
July 2016)
(a) Mohd Hanafiah, K.; Groeger, J.; Flaxman, A. D.; Wiersma, S. T.
Hepatology 2013, 57, 1333–1342; (b) Gravitz. L. Nature 2011, 474,
S2–S4
23. Guercio, G.; Manzo, A. M.; Goodyear, M.; Bacchi, S.; Curti, S.;
Provera, S. Org. Process Res. Dev. 2009, 13, 489-493.
4.
5.
Kronenberger, B.; Zeuzem, S. J. Viral Hepat. 2012, 19, 48–51.
(a) Dounay, A. B. In Innovative Drug Synthesis; Li, J. J. & Johnson,
D. S. (Eds.); John Wiley & Sons, Inc.: Hoboken, New Jersey, 2016;
pp 15-41; (b) Bhalerao, D. S.; Arkala, A. K. R.; Madhavi, Y. V.;
Nagaraju, M.; Gade, S. R.; Syam Kumar, U. K.; Bandichhor, R.;
Dahanukar, V. H. Org. Process Res. Dev. 2015, 19, 1559−1567.
Venkatraman, S.; Bogen, S. L.; Arasappan, A.; Bennett, F.; Chen,
K.; Jao, E.; Liu, Y.-T.; Lovey, R.; Hendrata, S.; Huang, Y.; Pan, W.;
Parekh, T.; Pinto, P.; Popov, V.;Pike, R.; Ruan, S.; Santhanam, B.;
Vibulbhan, B.; Wu, W.; Yang, W.; Kong, J.; Liang, X.; Wong, J.;
Liu, R.; Butkiewicz, N.; Chase, R.; Hart, A.; Agrawal, S.; Ingravallo,
P.; Pichardo, J.; Kong, R.; Baroudy, B.; Malcolm, B.; Guo, Z.;
Prongay, A.; Madison, V.; Broske, L.; Cui, X.; Cheng, K.-C.; Hsieh,
Y.; Brisson, J.-M.; Prelusky, D.; Korfmacher, W.; White, R.;
Bogdanowich-Knipp, S.; Pavlovsky, A.; Bradley, P.; Saksena, A. K.;
Ganguly, A.; Piwinski, J.; Girijavallabhan, V.; Njoroge, F. G. J.
Med. Chem. 2006, 49, 6074–6086.
24. Togo, H.; Iida, S. Synlett. 2006, 2159–2175.
25. X-ray diffraction analysis. X-ray data was collected at 291 K on a
Bruker Kappa APEX II diffractometer with graphite monochromated
MoKα radiation (λ = 0.7107Å). The crystal structure was solved by
direct methods (SIR92) and refined by full-matrix least-squares
method on F2 using SHELXL-97. Crystallographic data have been
deposited with the Cambridge Crystallographic Data Centre. Crystal
data of 3•HCl: C9H16ClNO2, M = 205.68, orthorhombic, P212121, a =
7.3136(11), b = 8.9011(10), c = 16.441(3) Å, V = 1070.3(3) Å3, Z =
4, ρcalcd = 1.276 g/cm3, 4836 reflections measured, 1945 unique (Rint
= 0.0501), R1 = 0.0548 and wR2 = 0.1278 for 1423 observed
reflections, CCDC no. 1526924.
6.
26. Kim, S. Y.; Chung, Y. K. J. Org. Chem. 2010, 75, 1285-1288.
27. Bicker, W.; Kacprzak, K.; Kwit, M.; Lämmerhofer, M.; Gawronski,
J.; Lindner, W. Tetrahedron: Asymmetry 2009, 20, 1027–1035.
7.
8.
9.
Park, J.; Sudhakar, A.; Wong, G. S; Chen, M.; Weber, J.; Yang X.;
Kwok, D.-I.; Jeon, I.; Raghavan, R. R; Tamarez, M.; Tong, W.;
Vater, E. J. PCT Patent Application WO 2004/113295 A1, 2004;
Chem. Abstr. 2004, 142:93671.
Wu, G.; Chen, F. X.; Rashatasakhon, P.; Eckert, J. M.; Wong, G. S.;
Lee, H.-C.; Erickson, N. C.; Vance, J. A.; Nirchio, P. C.; Weber, J.;
Tsai, D. J.-S.; Nanfei, Z. PCT Patent Application WO 2007/075790
A1, 2007; Chem. Abstr. 2007, 147:143273.
Li, T.; Liang, J.; Ambrogelly, A.; Brennan, T.; Gloor, G.; Huisman,
G.; Lalonde, J.; Lekhal, A.; Mijts, B.; Muley, S.; Newman, L.;
Tobin, M.; Wong, G.; Zaks, A.; Zhang, X. J. Am. Chem. Soc. 2012,
134, 6467–6472.
Supplementary Material
Experimental details of BC-esterase and Esterase V mediated
hydrolysis of cis-cypermethric acid ethyl ester, selected entries
from the experiments directed towards optimizing the
hydroboration of 20, 1H and 13C NMR spectra of all key
compounds reported herein, and detailed information on the
crystal structure of 3•HCl.
10. Nariyam, S. M.; Bhalerao, D. S.; Dahanukar, V. H.; Oruganti, S.;
Rapolu, R. K.; Kandagatla, B.; Iqbal, J.; Khobare, S. R.; Kallam, S.
R.; Banda, M.; Garare, V. S.; Eda, V. V. R. PCT Patent Application
WO 2013/190509 A2, 2013; Chem. Abstr. 2013, 160:118032.
11. As will be demonstrated ahead, (1S)-cis-cypermethric acid 19 can be
conveniently obtained by chiral resolution of cis-cypermethric acid
rac-19, a widely employed synthetic precursor of many pyrethroid
class of insecticides.