G Model
MRB 7357 1–4
4
P. Attri et al. / Materials Research Bulletin xxx (2014) xxx–xxx
147
148
Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2012R1A1A3019866).
100
80
60
40
20
149
References
[1] S. Iijima, Nature 354 (1991) 56–58.
[2] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297 (2002) 787–792.
[3] P. Attri, P. Venkatesu, A. Kumar, Physical Chemistry Chemical Physics 13 (2011)
2788–2796.
150
151
152
153
154
155
156
157
158
[4] P. Attri, P. Venkatesu, T. Hofman, The Journal of Physical Chemistry B 115 (2011)
10086–10097.
[5] C. Chen, J. Zhang, F. Peng, D. Su, Materials Research Bulletin 48 (2013)
3218–3222.
[6] R. Atchudan, J. Joo, A. Pandurangan, Materials Research Bulletin 48 (2013)
2205–2212.
[7] S.S. Bhoware, M.S. Maubane, A. Shaikjee, I. Beas, A. Ziegler, N.J. Coville,
Materials Research Bulletin 48 (2013) 2347–2350.
[8] C. Liu, H. Chen, K. Dai, A. Xue, H. Chen, Q. Huang, Materials Research Bulletin 48
(2013) 1499–1505.
[9] J. Luo, H.-J. Niu, H.-L. Wen, W.-J. Wu, P. Zhao, C. Wang, X.-D. Bai, W. Wang,
Materials Research Bulletin 48 (2013) 988–994.
[10] X. Fu, H. Yang, K. He, Y. Zhang, J. Wu, Materials Research Bulletin 48 (2013)
487–494.
0
1
2
3
4
5
6
Cycles
Fig. 3. Catalytic cycles versus yield for Michael reaction.
[11] D. Xue, K. Li, J. Liu, C. Sun, K. Chen, Materials Research Bulletin 47 (2012)
2838–2842.
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
[12] X. Li, Z. Xu, Materials Research Bulletin 47 (2012) 4383–4391.
[13] S.H. Kim, T.K. Lee, J.H. Jung, J.N. Park, J.B. Kim, S.H. Hur, Materials Research
Bulletin 47 (2012) 2760–2764.
CNT had very low conversion rate. Whereas, in the presence of
CeO2 supported CNT the conversion of NO was found to be very
high. Additionally, another group showed that the activity of the
CÀÀC bond coupling reaction in the presence of palladium
nanoparticle supported CNT was very high as compared to the
palladium supported activated carbon [36]. Therefore, we cata-
lyzed the rest of the Michael addition of various substituted
piperazines, aliphatic, aromatic amines, imidazoles, and thiols
159
160
161
[14] S. Saipanya, T. Sarakonsri, P. Wongtap, Materials Research Bulletin 47 (2012)
2765–2766.
[15] S. Santangelo, M. Lanza, E. Piperopoulos, S. Galvagno, C. Milone, Materials
Research Bulletin 47 (2012) 595–601.
[16] F.-J. Zhang, W.-C. Oh, K. Zhang, Materials Research Bulletin 47 (2012) 619–624.
[17] D. Zhang, L. Zhang, L. Shi, C. Fang, H. Li, R. Gao, L. Huang, J. Zhang, Nanoscale 5
(2013) 1127–1136.
162
163
164
165
166
[18] C. Fang, D. Zhang, S. Cai, L. Zhang, L. Huang, H. Li, P. Maitarad, L. Shi, R. Gao, J.
with
a,b-unsaturated nitriles or carbonyl compounds in the
Zhang, Nanoscale 5 (2013) 9199–9207.
[19] D. Zhang, L. Zhang, C. Fang, R. Gao, Y. Qian, L. Shi, J. Zhang, RSC Advances 3
(2013) 8811–8819.
[20] C. Fang, D. Zhang, L. Shi, R. Gao, H. Li, L. Ye, J. Zhang, Catalysis Science &
Technology 3 (2013) 803–811.
[21] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida,
Science 300 (2003) 2072–2207.
[22] T. Fukushima, T. Aida, Chemistry – A European Journal 13 (2007) 5048–5058.
[23] M. Mohammadi, M. Foroutan, Physical Chemistry Chemical Physics 15 (2013)
2482–2494.
[24] Y. Chen, L. Bai, C. Zhou, J.-M. Lee, Y. Yang, Chemical Communications 47 (2011)
6452–6454.
[25] S.H. Hong, T.T. Tung, L.K.H. Trang, T.Y. Kim, K.S. Suh, Colloid and Polymer
Science 288 (2010) 1013–1018.
[26] M.L. Polo-Luque, B.M. Simonet, M. Valcárcel, TrAC Trends in Analytical
presence of MWCNT–TEAP catalyst system. The results of the
above reactions are schematically summarized in Table 2. We also
observed the recyclability of bucky gel that shows that it will retain
its yield up to six cycles in high yield, as shown in Fig. 3.
In conclusion, the interaction between MWCNT and TEAP
results in a new catalyst system which is well documented as an
accomplished catalyst for the synthesis of Michael reactions under
solvent-free conditions. The use of this catalyst provides several
advantages; (i) MWCNT–TEAP is a cost effective and environmen-
tally benign reagent, (ii) green synthesis (avoiding hazardous and
toxic organic solvents for work-up), (iii) applicability to a wide
range of substituted aldehydes and (iv) mild temperature reaction
condition. So, basically the type of MWCNT governs the catalytic
efficiency of bucky gel. Hence, the MWCNT–TEAP catalyst provides
a better product yield, simple reaction conditions, shorter reaction
times, easy work-up and recyclability making it a green, easy and
superior method for the synthesis.
167
168
169
170
Chemistry 47 (2013) 99–110.
[27] M. Tunckol, J. Durand, P. Serp, Carbon 50 (2012) 4303–4334.
[28] J.Y. Wang, H.B. Chu, Y. Li, ACS Nano. 2 (2008) 2540–2546.
[29] Y.E. Ahmad, E. Laurent, P. Maillet, A. Talab, J.F. Teste, R. Dohkan, G. Tran, V.
Ollivier, Journal of Medicinal Chemistry 40 (1997) 952–960.
[30] N. Azizi, M.R. Saidi, Tetrahedron 60 (2004) 383–387.
[31] A.K. Verma, P. Attri, V. Chopra, R.K. Tiwari, R. Chandra, Monatshefte fur Chemie
139 (2008) 1041–1047.
171
172
173
[32] M.R. Saidi, Y. Pourshojaei, F. Aryanasab, Synthetic Communications 39 (2009)
1109–1119.
142
Acknowledgements
[33] V.R. Choudhary, D.K. Dumbre, S.K. Patil, RSC Advances 2 (2012) 7061–7065.
[34] L. Zhao, Y. Li, Z. Liu, H. Shimizu, Chemistry of Materials 22 (2010) 5949–5956.
[35] X.R. Ye, Y. Lin, C.M. Wai, Chemical Communications (2003) 642–643.
[36] A. Corma, H. Garcia, A. Leyva, Journal of Molecular Catalysis A: Chemical 230
(2005) 97–105.
143
144
145
146
We gratefully acknowledge the SRC program of the National
Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 20100029418) and in part by Kwangwoon
University 2014. KY Baik gratefully acknowledges the National
174