5370
Q. Li et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5367–5370
3. Bos, J. L. Cancer Res. 1998, 49, 4682–4689.
4. Ayral-Kaloustian, S.; Salaski, E. J. Curr. Med. Chem.
2002, 9, 1003–1032.
5. Singh, S. B.; Lingham, R. B. Curr. Opin. Drug Dis. Dev.
2002, 5, 225–244.
6. Dancey, J. E. Curr. Pharm. Des. 2002, 8, 2259–2267.
7. Purcell, W. T.; Donehower, R. C. Curr. Oncol. Rep. 2002,
4, 29–36.
8. Hluska, P.; Dy, G. K.; Adjei, A. A. Eur. J. Cancer 2002,
38, 1685–1700.
9. Sebti, S. M.; Hamilton, A. D. Exp. Opin. Invest. Drugs
2000, 9, 2767–2782.
10. Norman, P. Curr. Opin. Invest. Drugs 2002, 3, 313–319.
11. Ishiyama, T.; Kizaki, H.; Hayashi, T.; Suzuki, A.;
Miyaura, N. J. Org. Chem. 1998, 63, 4726–4731.
12. Molina, P.; Fresneda, P. M.; Garcia-Zafra, S. Tetrahedron
Lett. 1996, 37, 9353–9356.
13. Bassini, C.; Bismara, C.; Carlesso, R.; Feriani, A.;
Gaviraghi, G.; Marchioro, C.; Perboni, A.; Shaw, R. E.;
Tamburini, B.; Tarzia, G.; Xerri, L. Farmaco 1993, 48,
159–189.
14. Kvita, V.; Sauter, H. Angew. Chem., Int. Ed. Engl. 1987,
26, 790–791.
Figure 2. Stereo views of (A) tipifarnib and (B) an overlay of a model
of compound 2a (in green) over the X-ray crystal structure of tipifarnib
(1) (in purple) in complex with FTase in the active site. Zn+2 is shown
in grey and hydroxy farnesylpyrophosphate in blue.
15. Williams, T. M.; Bergman, J. M.; Brashear, K.; Breslin,
M. J.; Dinsmore, C. J.; Hutchinson, J. H.; MacTough, S.
C.; Stump, C. A.; Wei, D. D.; Zartman, C. B.; Bogusky,
M. J.; Culberson, J. C.; Buser-Doepner, C.; Davide, J.;
Greenberg, I. B.; Hamilton, K. A.; Koblan, K. S.; Kohl,
N. E.; Liu, D.; Lobell, R. B.; Mosser, S. D.; OÕNeill, T. J.;
Rands, E.; Schaber, M. D.; Wilson, F.; Senderak, E.;
Motzel, S. L.; Gibbs, J. B.; Graham, S. L.; Heimbrook, D.
C.; Hartman, G. D.; Oliff, A. I.; Huff, J. R. J. Med. Chem.
1999, 42, 3779–3784.
Stereo view of an overlay of a model of 2a, which was
modeled based on the crystal structure of a close chem-
ical analog22 and the X-ray crystal structure of tipifarnib
(1) is shown in Figure 2b. The model of 2a superimposes
very well with tipifarnib. The important cyano group of
2a binds to the main chain loop consisting of residues
Asp359, Phe360 and Tyr361 through a combination of
electrostatic and van der Waals interaction.
16. Hasvold, L. A.; Wang, W.; Gwaltney, S. L.; Rockway, T.
W., II; Nelson, L. T. J.; Mantei, R.; Fakhoury, S.;
Sullivan, G.; Li, Q.; Lin, N.-H.; Wang, L.; Zhang, H.;
Cohen, J.; Gu, W.-Z.; Marsh, K.; Bauch, J.; Rosenberg,
S.; Sham, H. Bioorg. Med. Chem. Lett. 2003, 13, 4001–
4005.
In summary, we have used the structure of tipifarnib to
design a series of novel inhibitors of FTase. The com-
pounds demonstrate potent activity against FTase with
IC50 values in the nanomolar range. The current series
of compounds are highly selective and their IC50 values
against GGTase are in the double-digit micromolar
range. The successful discovery of 4-quinolone 2 as a po-
tent FTase inhibitor has opened a door for future
opportunities to extend further into other 4-quinolones
and bicyclic 2-pyridones.23 However, further structural
modifications are needed in order to improve the cellular
activity of the current series. These efforts have led to the
discovery of more potent FTase inhibitors, the detailed
of which will be presented elsewhere16,22,24 and in the
subsequent paper in the current journal.
17. Protein of the Rat Ftase was purified and crystallized in
the presence of HFP and Ac-CVIM peptide according to
the methods outlined in Strickland et al.18 Crystals of
Ftase were soaked in a solution containing 0.1M KCl,
0.1M sodium acetate pH4.7 saturated with tipifarnib. The
˚
structure was refined to 3.5A resolution with an
R = 22.31% and Rfree = 29.19%. Crystallographic data
for structure of tipifarnib in complex with FTase in this
paper have been deposited with PDB (ID: 1X81).
18. Strickland, C.; Windsor, W. T.; Syto, R.; Wang, L.; Bond,
Ri.; Wu, Z.; Schwartz, J.; Le, H. V.; Beese, L. S.; Weber,
P. C. Biochemistry 1998, 37, 16601–16611.
19. Reid, T. S.; Beese, L. S. Biochemistry 2004, 43, 6877–6884.
20. Assay methods described in: Vogt, A.; Qian, Y.; Blaskov-
ich, M. A.; Fossum, R. D.; Hamilton, A. D.; Sebti, S. M.
J. Biol. Chem. 1995, 270, 660–664.
21. Wang, L.; Johnson, W. W. Chemotherapy 2003, 49, 303–308.
22. Wang, L.; Wang, G. T.; Wang, X.; Tong, Y.; Sullivan, G.;
Park, D.; Leonard, N.; Li, Q.; Cohen, J.; Gu, W.-Z.;
Zhang, H.; Bauch, J.; Jacob, C. G.; Hutchins, C. W.; Stoll,
S. V.; Marsh, K.; Rosenberg, S. H.; Sham, H.; Lin, N.-H.
J. Med. Chem. 2004, 47, 612–626.
Acknowledgements
X-ray crystallographic data were collected at beamline
17-ID in the facilities of the Industrial Macromolecular
Crystallography Association Collaborative Access Team
(IMCA-CAT) at the Advanced Photon Source. These
facilities are supported by the companies of the Indus-
trial Macromolecular Crystallography Association.
23. Li, Q.; Mitscher, L. A.; Shen, L. L. Med. Res. Rev. 2000,
20, 231–293.
References and notes
24. Tong, Y.; Lin, N.-H.; Wang, L.; Hasvold, L.; Wang, W.;
Leonard, N.; Li, T.; Li, Q.; Cohen, J.; Gu, W.-Z.; Zhang,
H.; Stoll, V.; Bauch, J.; Marsh, K.; Rosenberg, S. H.;
Sham, H. L. Bioorg. Med. Chem. Lett. 2003, 13, 1571–
1574.
1. Hurwitz, H. I.; Casey, P. J. Curr. Top. Membranes 2002,
52, 531–550.
2. Downward, J. Nat. Rev. Cancer 2003, 3, 11–22.