10.1002/anie.202001184
Angewandte Chemie International Edition
Fager & Morrison, et al.; Page 12
17028; m) R. Yonesaki, Y. Kondo, W. Akkad, M. Sawa, K. Morisaki, H. Morimoto, T. Ohshima, Chem. Eur. J. 2018, 24,
15211–15214; n) Z. Li, B. Hu, Y. Wu, C. Fei, L. Deng, Proc. Natl. Acad. Sci. 2018, 115, 1730–1735;
[8] For catalytic enantioselective methods for synthesis of a-tertiary amines that contain a CF3 group and two
different aryl moieties, see: a) M. Miyagawa, M. Yoshida, Y. Kiyota, T. Akiyama, Chem. Eur. J. 2019, 25, 5677–5681;
b) J. Zhu, L. Huang, W. Dong, N. Li, X. Yu, W.-P. Deng, W. Tang, Angew. Chem. Int. Ed. 2019, 58, 16119–16123. For
catalytic enantioselective methods that afford F3C- and aryl-substituted a-tertiary homoallylic amines (or their
protected forms) that contain additional functional units that may be used for more specific applications, see: c) L.-
H. Sun, Z.-Q. Liang, W.-Q. Jia, S. Ye, Angew. Chem. Int. Ed. 2013, 52, 5803–5806. For a catalytic enantioselective
protocol that provides access to F3C-substituted a-tertiary homoallylic amines that do not carry an aryl moiety, see:
d) B. M. Trost, C.-I. Hung, M. J. Scharf, Angew. Chem. Int. Ed. 2018, 57, 11408–11412; e) U. Bhakta, P. V. Kattamuri,
J. H. Siitonen, L. B. Alemany, L. Kürti, Org. Lett. 2019, 21, 9208–9211.
[9] Stereochemical control is more likely with Z-alkenes because allylic strain plays a more significant role in
impacting the relative energies of different conformers. For relevant examples, see: A. H. Hoveyda, D. A. Evans, G.
C. Fu, Chem. Rev. 1993, 93, 1307–1370.
[10] H. Jang, F. Romiti, S. Torker, A. H. Hoveyda, Nat. Chem. 2017, 9, 1269–1275.
[11] a) C. Krüger, E. G. Rochow, U. Wannagat, Chem. Ber. 1963, 96, 2132–2137. b) F. Gosselin, P. D. O’Shea, S. Roy,
R. A. Reamer, C. Chen, R. P. Volante, Org. Lett. 2005, 7, 355–358; c) V. Sukach, S. Melnykov, S. Bertho, I. Diachenko,
P. Retailleau, M. Vovk, I. Gillaizeau, Org. Lett. 2019, 21, 2340–2345. See the Supporting Information for additional
details.
[12] a) D. L. Silverio, S. Torker, T. Pilyugina, E. M. Vieira, M. L. Snapper, F. Haeffner, A. H. Hoveyda, Nature 2013, 494,
216–221; b) H. Wu, F. Haeffner, A. H. Hoveyda, J. Am. Chem. Soc. 2014, 136, 3780–3783; c) F. W. van der Mei, H.
Miyamoto, D. L. Silverio, A. H. Hoveyda, Angew. Chem. Int. Ed. 2016, 55, 4701–4706; d) R. J. Morrison, A. H. Hoveyda,
Angew. Chem. Int. Ed. 2018, 57, 11654–11661.
[13] a) K. Lee, D. L. Silverio, S. Torker, D. W. Robbins, F. Haeffner, F. W. van der Mei, A. H. Hoveyda, Nat. Chem. 2016,
8, 768–777; b) D. W. Robbins, K. Lee, D. L. Silverio, A. Volkov, S. Torker, A. H. Hoveyda, Angew. Chem. Int. Ed. 2016,
55, 9610–9614; c) F. W. van der Mei, C. Qin, R. J. Morrison, A. H. Hoveyda, J. Am. Chem. Soc. 2017, 139, 9053–9065;
d) N. W. Mszar, M. S. Mikus, S. Torker, F. Haeffner, A. H. Hoveyda, Angew. Chem. Int. Ed. 2017, 56, 8736–8741; e) T.
Sengoku, A. Sugiyama, Y. Kamiya, R. Maegawa, M. Takahashi, H. Yoda, Eur. J. Org. Chem. 2017, 1285–1288; f) D. C.
Fager, K. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2019, 141, 16125–16138.
[14] R. J. Morrison, F. W. van der Mei, F. Romiti, A. H. Hoveyda, J. Am. Chem. Soc. 2020, 142, 436–447.
[15] See the Supporting Information for details.
[16] B. W. Bakr, C. D. Sherrill, Phys. Chem. Chem. Phys. 2018, 20, 18241–18251.
[17] a) M. J. Koh, T. T. Nguyen, H. Zhang, R. R. Schrock, A. H. Hoveyda, Nature 2016, 531, 459–465; b) T. T. Nguyen,
M. J. Koh, T. J. Mann, R. R. Schrock, A. H. Hoveyda, Nature 2017, 552, 347–354.
[18] a) R. W. Hoffmann, W. Ladner, K. Ditrich, Liebigs Ann. Chem. 1989, 883–889; b) P. V. Ramachandran, D. Pratihar,
D. Biswas, Chem. Commun. 2005, 1988–1989; c) F. Weber, A. Schmidt, O. Röse, M. Fischer, O. Burghaus, G. Hilt, Org.
Lett. 2015, 17, 2952–2955.
This article is protected by copyright. All rights reserved.