7502
H. Çavdar et al. / Bioorg. Med. Chem. Lett. 22 (2012) 7499–7503
5. Borges de Melo, E.; da Silveira Gomes, A.; Carvalho, I. Tetrahedron 2006, 62,
10277.
H
N
6. Worawalai, W.; Rattanangkool, E.; Vanitcha, A.; Phuwapraisirisan, P.;
Wacharasindhu, S. Bioorg. Med. Chem. Lett. 2012, 22, 1538.
N
N
H
HO
MeO2C
Vincamine
7. (a) Lebovitz, H. E. Endocrinol. Metab. Clin. North Am. 1997, 26, 539; (b) Clissold,
S. P.; Edward, C. Drugs 1988, 35, 214; (c) Donahue, R. P.; Abbott, R. D.; Reed, D.
M.; Yano, K. Diabetes 1967, 36, 689; (d) Yee, H. S.; Fong, N. T. Pharmacotherapy
1996, 26, 539; (e) Sharon, A.; Pratap, R.; Tripathi, B.; Srivastava, A. K.; Maulik, P.
R.; Ram, V. J. Bioorg. Med. Chem. Lett. 2005, 15, 1341.
indoline
Me
8. (a) Saracoglu, N. Top. Heterocycl. Chem. 2007, 11, 1; (b) Suzen, S. Top. Heterocycl.
Chem. 2007, 11, 145; (c) Pandi-Perumal, S. R.; Srinivasan, V.; Maestroni, G. J. M.;
Cardinali, D. P.; Poeggeler, B.; Hardeland, R. FEBS J. 2006, 273, 2813; (d) Tan, D.
X.; Manchester, L. C.; Terron, M. P.; Flores, L. J.; Reiter, R. J. J. Pineal Res. 2007, 42,
28; (e) Ekinci, D.; Cavdar, H.; Durdagi, S.; Talaz, O.; Senturk, M.; Supuran, C. T.
Eur. J. Med. Chem. 2012, 49, 68.
9. (a) Balfour, J. A.; McTavish, D. Drugs 1993, 46, 1025; (b) Truscheit, E.; Frommer,
W.; Junge, B.; Müller, L.; Schmidt, D. D.; Wingender, W. A. Angew. Chem., Int. Ed.
Engl. 1981, 20, 744; (c) Li, T.; Guo, L.; Zhang, Y.; Wang, J.; Zhang, Z.; Li, J.; Zhang,
W.; Lin, J.; Zhao, W.; Wang, P. G. Bioorg. Med. Chem. 2011, 19, 2136.
10. (a) Gross, P. E.; Baker, M. A.; Carver, J. P.; Dennis, J. W. Clin. Cancer Res. 1995, 1,
935; (b) Gloster, T. M.; Meloncelli, P.; Stick, R. V.; Zechel, D.; Vasella, A.; Davies,
G. J. J. Am. Chem. Soc. 2007, 129, 2345.
Figure 5. Structure of indoleine and vincamine.
molecules. Compounds 3 and 4 investigated here showed effective
and b glycosidase inhibitory activity, in the low micro molar
range. These findings point out that substituted –OAc and –OH
compounds may be used as leads for generating potent glycosidase
inhibitors.
It is apparent that conduritol derivatives have many important
roles. In addition, glycosidase inhibitors have gained great atten-
tion due to their impacts on cancer and diabetes. Thus, we synthe-
sized novel conduritol derivatives and measured their potencies at
glycosidase inhibition. In addition, we compared and discussed the
a
11. Koz, O.; Ekinci, D.; Senturk, M.; Perrone, A.; Piacente, S.; Caliskan, O. A.; Bedir, E.
Planta Med. 2011, 77, 1443.
12. (a) Kılıc, H.; Bayındır, S.; Erdogan, E.; Saracoglu, N. Tetrahedron 2012, 68, 5619;
(b) Bayındır, S.; Erdogan, E.; Kılıc, H.; Saracoglu, N. Synlett 2010, 10, 1455; (c)
Alves, Jose C. F.; Simas, Alessandro B. C.; Costa, Paulo R. R; Angelo, Jeand
Tetrahedron:Asymmetry 1963, 1997, 8; (d) Katsura, M.; Kuriyama, K. Eur. J.
Pharmacol. 1992, 224.
novel conduritols
a glycosidase inhibitory propensities with the
simple precursor and commercially available compound acarbose.
Our groups have reported several interactions of different func-
tional groups with different enzymes.14,15 However, this research
is starting point for us to design and discover novel glycosidase
inhibitors.
13. Altenbach, H.-J.; Stegelmeier, H.; Vogel, E. Tetrahedron Lett. 1978, 19, 3333.
14. (a) Ekinci, D.; Cavdar, H.; Talaz, O.; Senturk, M.; Supuran, C. T. Bioorg. Med.
Chem. 2010, 18, 3559; (b) Alp, C.; Ekinci, D.; Gultekin, M. S.; Senturk, M.; Sahin,
E.; Kufrevioglu, O. I. Bioorg. Med. Chem. 2010, 18, 4468; (c) Senturk, M.; Talaz,
O.; Ekinci, D.; Cavdar, H.; Kufrevioglu, O. I. Bioorg. Med. Chem. Lett. 2009, 19,
3661; (d) Ceyhun, S. B.; Senturk, M.; Yerlikaya, E.; Erdogan, O.; Kufrevioglu, O.
I.; Ekinci, D. Environ. Toxicol. Pharmacol. 2011, 32, 69; (e) Cakmak, R.; Durdagi,
S.; Ekinci, D.; Senturk, M.; Topal, G. Bioorg. Med. Chem. Lett. 2011, 21, 5398.
15. (a) Ekinci, D.; Senturk, M.; Beydemir, S.; Kufrevioglu, O. I.; Supuran, C. T. Chem.
Biol. Drug Des. 2010, 76, 552; (b) Durdagi, S.; Senturk, M.; Ekinci, D.; Balaydin,
H. T.; Goksu, S.; Kufrevioglu, O. I.; Innocenti, A.; Scozzafava, A.; Supuran, C. T.
Bioorg. Med. Chem. 2011, 19, 1381; (c) Cavdar, H.; Ekinci, D.; Talaz, O.;
Saracoglu, N.; Senturk, M.; Supuran, C. T. J. Enzyme Inhib. Med. Chem. 2012, 27,
148.
Consequently, conduritol derivatives used in this study affect
the activity of
ferent functional groups present in their aromatic scaffold. Our
findings here indicate thus another class of possible and b gluco-
a and b glucosidases due to the presence of the dif-
a
sidases of interest, in addition to the well-known acarbose and
conduritol F derivatives bearing bulky in their structures. Indeed,
new conduritol derivatives investigated here showed very effective
b glucosidases inhibitory activity compared to well known agents.
These findings point out that novel substituted conduritol deriva-
tives may be used as leads for generating potent glucosidases
inhibitors. Thus, this approach may also be useful in the design
and exploitation of novel drug candidates for diabetes, viral infec-
tions including HIV and influenza and cancer. However, these fea-
tures of the compounds are beyond the scope of this study and
merits further investigations.
16. Senturk, M.; Ekinci, D.; Goksu, S.; Supuran, C. T. J. Enzyme Inhib. Med. Chem.
2012, 27, 365.
17. Detailed synthetic procedures for the preparation of all derivatives 1–4 can be
found in: (1R,2R,3S,6S)-3,6-di(indolin-1-yl)cyclohex-4-ene-1,2-diol (1)
: To
solution of indoline (119 mg, 1.0 mmol) and anti-bisepoxide (56 mg,
0.5 mmol) in 20 mL CH2Cl2 was stirred at room temperature for 16 h . After
complete conversion as indicated by TLC, the solvent was removed by
evaporation and the residue was diluted with water and extracted with ethyl
acetate (2 Â 10 mL). The combined organic layers were dried over anhydrous
Na2SO4 and concentrated in vacuo. The residue was submitted to column
chromatography on silica gel (25 g) eluting with ethyl acetate/hexane (7%).
Elution gave (1R,2R,3S,6S)-3,6-di(indolin-1-yl)cyclohex-4-ene-1,2-diol (1) as a
sole product. Pale brown crystals from CH2Cl2/n-hexane (2:1), (140 mg, 80%,
mp 82–83 °C).
Supplementary data
1H NMR (400 MHz, CDCl3): d 7.10–7.05 (m, 4H), 6.71–6.67 (m,2H), 6.56 (d,
J = 8.1 Hz, 2H), 5.65 (br s, 2H), 4.26 (m, 2H), 4.06 (dd, J = 6.6 Hz, J = 2.2 Hz, 2H),
3.56–3.51 (m, 2H), 3.30 (dd, J = 18.5 Hz, J = 9.7 Hz, 2H), 2.04–3.03 (m, 4H).
13C NMR (100 MHz, CDCl3): d 151.10, 130.80, 129.41, 127.51, 125.01, 118.65,
108.14, 72.20, 59.95, 48.30, 28.53. IR (KBr, cmÀ1): 3367, 3042, 3019, 2925,
2845, 1605, 1486, 1457, 1254, 1085, 1023. Anal. Calcd for C22H24N2O2: C,
75.83; H, 6.94; N, 8.04 Found: C, 75.82; H, 6.95; N, 8.06;
Supplementary data associated with this article can be found, in
References and notes
(1R,2R,3S,6S)-3,6-di(1H-indole-1-yl)cyclohex-4-ene-1,2-diyl diacetate (2)
: The
pure product (1) (200 mg, 0.57 mmol) was acetylated in pyridine (1.00 g) and
Ac2O (0.50 g) at 1 day. Then, the mixture was cooled to 0 °C and poured into a
cold solution (1%, 100 mL) of HCl. The mixture was extracted with CH2Cl2
(3 Â 50 mL). The combined organic layer was washed with NaHCO3 (5%,
100 mL) and water (100 mL). The combined organic layers were dried over
anhydrous Na2SO4 and concentrated in vacuo. Then, the crude product in
CH2Cl2 (10 mL) was added activated MnO2 (496 mg, 10 mmol).The mixture
was stirred at rt for24 h. After filtration, the mixture was evaporated under
vacuo. The residue was submitted to column chromatography on silica gel
(20 g) eluting with ethyl acetate/hexane (10%). Elution gave (1R,2R,3S,6S)-3,6-
di(1H-indole-1-yl)cyclohex-4-ene-1,2-diyl diacetate (2) as a sole product. White
crystals from CH2Cl2/n-hexane (2:1), (181 mg, 74%, mp 103–104 °C).
1H NMR (400 MHz, CDCl3): d 7.64 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H),
7.26–7.22 (m, 2H), 7.16–7.10 (m, 4H), 6.61 (d, J = 3.3 Hz, 2H), 6.13 (br s, 2H),
5.66 (dd, J = 6.4 Hz, J = 2.4 Hz, 2H), 5.47–5.46 (m, 2H), 1.62 (s, 6H).
13C NMR (100 MHz, CDCl3): d 169.31, 136.82, 129.64, 129.07, 125.16, 122.15,
121.60, 120.21, 109.67, 103.72, 73.07, 57.36, 20.40.
1. Gultekin, M. S.; Celik, M.; Balci, M. Curr. Org. Chem. 2004, 8, 1159.
2. (a) Lu, P.-H.; Yang, C.-H.; Devendar, B.; Liao, C.-C. Org. Lett. 2010, 12, 2642; (b)
Leysek, R.; Schutz, C.; Vogel, P. Bioorg. Med. Chem. Lett. 2005, 15, 3071; (c)
Kresze, G.; Dittel, W. Liebigs Ann. Chem. 1981, 610; (d) Kelebekli, L.; Çelik, M.;
Sßahin, E.; Kara, Y.; Balcı, M. Tetrahedron Lett. 2006, 47, 7031; (e) Spielvogel, D.;
Kammerer, J.; Keller, M.; Prinzbach, H. Tetrahedron Lett. 2000, 41, 7863; (f)
Leysek, R.; Schutz, C.; Favre, S.; O’Sullivan, C. A.; Pillonel, C.; Vogel, P. Bioorg.
Med. Chem. 2006, 14, 6255; (g) Pilgrim, S.; Kociok-Köhn, G.; Lloyd, M. D.; Lewis,
S. E. Chem. Commun. 2011, 47, 4799; (h) Werner, L.; Hudlicky, J. R.; Wernerova,
M.; Hudlicky, T. Tetrahedron 2010, 66, 3761; (i) Ghosal, P.; Shaw, A. K. J. Org.
Chem. 2012, 77, 7627; (j) Duchek, J.; Adams, D. R.; Hudlicky, T. Chem. Rev. 2011,
11, 4223; (k) Lysek, R.; Vogel, P. Tetrahedron 2006, 62, 2733.
ejoc.201200582.; (b) Werner, L.; Machara, A.; Sullivan, B.; Carrera, I.; Moser,
M.; Adams, D. R.; Hudlicky, T.; Andraos, J. J. Org. Chem. 2011, 76, 10050; (c)
Ramstadius, C.; Hekmat, O.; Eriksson, L.; Stalbrand, H.; Cumpstey, I.
Tetrahedron:Asymmetry 2009, 20, 795; (d) Kresze, G.; Dittel, W. Liebigs Ann.
Chem. 1981, 610; (e) Grabowski, S.; Armbruster, J.; Prinzbach, H. Tetrahedron
Lett. 1979, 38, 5485; (f) Altenbach, H.; Stegelmeier, J.; Wilhelm, H. M.; Voss, B.;
Lex, J.; Vogel, E. Angew. Chem., Int. Ed. Engl. 1979, 18, 962.
IR (KBr, cmÀ1): 2924, 2854, 1744, 1611, 1514, 1460, 1372, 1311, 1222, 1052,
1014, 964, 904. . Anal. Calcd for C26H24N2O4: C, 72.88; H, 5.65; N, 6.54 Found: C,
72.87; H, 5.66; N, 6.52;
(1S,2S,3R,6R)-2-hydroxy-6-(indolin-1-yl)cyclohex-4-ene-1,3-diyl diacetate (3): To
4. Kornienko, A.; Evidente, A. Chem. Rev. 1982, 2008, 108.