10.1002/chem.201905771
Chemistry - A European Journal
COMMUNICATION
[2]
a) D. Grzybowska, P. Malinowski, Z. Mazej, W. Grochala, Collect.
Czech. Chem. Commun. 2008, 73, 1729; b) A. C. Hart, in e-EROS,
Wiley, 2007, DOI: 10.1002/047084289X.rn00740; c) A. A. Goryunkov,
V. Y. Markov, O. V. Boltalina, B. Žemva, A. K. Abdul-Sada, R. Taylor, J.
Fluorine Chem. 2001, 112, 191; d) A. Zweig, R. G. Fischer, J. E.
Lancaster, J. Org. Chem. 1980, 45, 3597; e) R. G. Plevey, M. P.
Steward, J. C. Tatlow, J. Fluorine Chem. 1974, 3, 259; f) J. Burdon, I.
W. Parsons, J. C. Tatlow, Tetrahedron 1972, 28, 43; g) D. A. Rausch, R.
A. Davis, D. W. Osborne, J. Org. Chem. 1963, 28, 494; h) K. B. Kellogg,
G. H. Cady, J. Am. Chem. Soc. 1948, 70, 3986; i) E. McBee, L. Bechtol,
Ind. Eng. Chem. 1947, 39, 380; j) W. Struve, A. Benning, F. Downing, R.
Lulek, W. Wirth, Ind. Eng. Chem. 1947, 39, 352; k) F. Stilmar, W. Strue,
W. Wirth, Ind. Eng. Chem. 1947, 39, 348; l) E. McBee, B. Hotten, L.
Evans, A. Alberts, Z. Welch, W. Ligett, R. Schreyer, K. Krantz, Ind. Eng.
Chem. 1947, 39, 310; m) G. Cady, A. Grosse, E. Barber, L. Burger, Z.
Sheldon, Ind. Eng. Chem. 1947, 39, 290.
[15] M. Font, X. Ribas, Top. Organomet. Chem. 2016, 54, 269, and
references therein.
[16] a) D. Joven-Sancho, M. Baya, A. Martín, B. Menjón, Chem. Eur. J.
2018, 24, 13098; b) D. Naumann, W. Tyrra, F. Trinius, W. Wessel, T.
Roy, J. Fluorine Chem. 2000, 101, 131; c) R. Eujen, B. Hoge, D. J.
Brauer, Inorg. Chem. 1997, 36, 3160; d) R. Eujen, B. Hoge, D. J.
Brauer, Inorg. Chem. 1997, 36, 1464; e) W. Dukat, D. Naumann, Rev.
Chim. Miner. 1986, 23, 589.
[17] S. Weske, R. A. Hardin, T. Auth, R. A. J. O'Hair, K. Koszinowski, C. A.
Ogle, Chem. Commun. 2018, 54, 5086.
[18] a) T. Jia, X. Zhang, T. Liu, F. Fan, Z. Zeng, X. G. Li, D. I. Khomskii, H.
Wu, Phys. Rev. B 2014, 89, 245117; b) R. Hoppe, R. Homann,
Naturwissenschaften 1966, 53, 501.
[19] a) W. Grochala, R. Hoffmann, Angew. Chem. Int. Ed. 2001, 40, 2742;
Angew. Chem. 2001, 113, 2816; b) B. Žemva, in Advanced Inorganic
Fluorides (Eds.: T. Nakajima, B. Žemva, A. Tressaud), Elsevier,
Amsterdam, 2000, pp. 79–115; c) B. G. Müller, Angew. Chem., Int. Ed.
Engl. 1987, 26, 1081; Angew. Chem. 1987, 99, 1120.
[20] (CF3)3Ag·NCMe has been described twice in the literature,[16b,16d] but
with different spectroscopic properties in each occasion. Its chemical
behavior is also surprising, since the MeCN ligand is purportedly not
replaced by better ligands as phosphines.
[3]
The fiercely strong fluorinating ability of AgF3 is very difficult to control,
but the complex salt K[AgF4] is just marginally more reactive than AgF2.
Following this trend, the corresponding complex salt K[AgF3] shows
substantially diminished reactivity.[2e]
[4]
[5]
J. K. Busse, E. J. Stoner, C. L. Ladd, in e-EROS, Wiley, 2015, DOI:
10.1002/047084289X.rs016.pub2
a) Z. Li, L. Song, C. Li, J. Am. Chem. Soc. 2013, 135, 4640; b) F. Yin, Z.
Wang, Z. Li, C. Li, J. Am. Chem. Soc. 2012, 134, 10401; c) Z. Li, Z.
Wang, L. Zhu, X. Tan, C. Li, J. Am. Chem. Soc. 2014, 136, 16439.
a) P. Tang, T. Furuya, T. Ritter, J. Am. Chem. Soc. 2010, 132, 12150;
b) T. Furuya, A. E. Strom, T. Ritter, J. Am. Chem. Soc. 2009, 131, 1662.
E. F. Murphy, R. Murugavel, H. W. Roesky, Chem. Rev. 1997, 97, 3425.
J. Miró, C. del Pozo, Chem. Rev. 2016, 116, 11924; W. J. Wolf, F. D.
Toste, in The Chemistry of Organogold Compounds, Vol. 1 (Eds.: Z.
Rappoport, I. Marek, J. F. Liebman), belonging to Patai's Chemistry of
Functional Groups, Wiley, Chichester, UK, 2014, pp. 391–408.
a) A. Higelin, S. Riedel, in Modern Synthesis Processes and Reactivity
of Fluorinated Compounds, Vol. 3 (Eds.: H. Groult, F. Leroux, A.
Tressaud), Elsevier, Amsterdam, 2017, pp. 561–586; b) S. Riedel, in
Comprehensive Inorganic Chemistry II, Vol. 2 (Eds.: E. V. Antipov, A. M.
Abakumov, A. V. Shevelkov), Elsevier, Amsterdam, 2013, pp. 187–221;
c) S. Riedel, M. Kaupp, Coord. Chem. Rev. 2009, 253, 606.
[21] A. Pérez-Bitrián, S. Martínez-Salvador, M. Baya, J. M. Casas, A. Martín,
B. Menjón, J. Orduna, Chem. Eur. J. 2017, 23, 6919.
[22] An even more shielded signal (δF = −265 ppm) is observed in the 19F
NMR spectrum of K[AgF4] in HF(l) at −40 °C.[23]
[6]
[23] R. Eujen, B. Žemva, J. Fluorine Chem. 1999, 99, 139.
[24] L. Brammer, E. A. Bruton, P. Sherwood, Cryst. Growth Des. 2001, 1,
277.
[7]
[8]
[25] K. Lutar, S. Milićev, B. Žemva, B. G. Müller, B. Bachmann, R. Hoppe,
Eur. J. Solid State Inorg. Chem. 1991, 28, 1335.
[26] a) A. G. Algarra, V. V. Grushin, S. A. Macgregor, Organometallics 2012,
31, 1467; b) P. Sgarbossa, A. Scarso, G. Strukul, R. A. Michelin,
Organometallics 2012, 31, 1257.
[9]
[27] U. Preiss, I. Krossing, Z. anorg. allg. Chem. 2007, 633, 1639.
[28] The (CF3)3Ag moiety (pF− 7.45) is a weaker Lewis acid than the heavier
homologue (CF3)3Au fragment (pF− 10.3): A. Pérez-Bitrián, M. Baya, J.
M. Casas, L. R. Falvello, A. Martín, B. Menjón, Chem. Eur. J. 2017, 23,
14918.
[29] The mixed organosilver(I) fluoride complex [CF3AgF]−, in turn,
undergoes CF2 extrusion in the gas phase giving rise to the purely
inorganic fluoride complex [AgF2]− (Figure S9) as the final product (cf.
Ref. [30]). Thus, every Ag–C bond in compound 2 is broken with
preference over the Ag–F bond.
[10] Previous reports on silver in higher oxidation states would need
confirmation: a) A. I. Popov, Y. M. Kiselev, Russ. J. Inorg. Chem. 1988,
33, 541; Zh. Neorg. Khim. 1988, 33, 965; b) A. I. Popov, Y. M. Kiselev,
V. F. Sukhoverkhov, V. I. Spitsyn, Dokl. Chem. 1988, 296, 424; Dokl.
Akad. Nauk SSSR 1987, 296, 615; c) P. Sorbe, J. Grannec, J. Portier,
P. Hagenmuller, J. Fluorine Chem. 1978, 11, 243; d) J. Grannec, P.
Sorbe, J. Portier, P. Hagenmuller, C. R. Acad. Sci., Ser. C 1977, 284,
231.
[30] N. J. Rijs, R. A. J. O'Hair, Dalton Trans. 2012, 41, 3395.
[31] The radical path involving homolytic cleavage of M–CF3 bonds is now
well documented in trifluoromethyl metal chemistry: a) M. Baya, D.
Joven-Sancho, P. J. Alonso, J. Orduna, B. Menjón, Angew. Chem. Int.
Ed. 2019, 58, 9954; Angew. Chem. 2019, 131, 10059; b) M. Baya, A.
Pérez-Bitrián, S. Martínez-Salvador, A. Martín, J. M. Casas, B. Menjón,
J. Orduna, Chem. Eur. J. 2018, 24, 1514.
[11] Mixed clusters containing Ag2C2 and AgF units have also been
described: a) Q.-M. Wang, T. C. W. Mak, J. Am. Chem. Soc. 2000, 122,
7608; b) G.-C. Guo, G.-D. Zhou, Q.-G. Wang, T. C. W. Mak, Angew.
Chem. Int. Ed. 1998, 37, 630; Angew. Chem. 1998, 110, 652.
[12] SIDipp = 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene:
C. M. Wyss, B. K. Tate, J. Bacsa, M. Wieliczko, J. P. Sadighi,
Polyhedron 2014, 84, 87.
[32] A. Harsányi, É. Dorkó, Á. Csapó, T. Bakó, C. Peltz, J. Rábai, J.
Fluorine Chem. 2011, 132, 1241.
[13] a) C.-J. Li, X. Bi (Eds.), Silver Catalysis in Organic Synthesis, Wiley-
VCH, Weinheim, 2019; b) A. S. K. Hashmi, in Silver in Organic
Chemistry (Ed.: M. Harmata), Wiley, Hoboken, NJ, 2010, pp. 357–379.
[14] a) L. Capdevila, E. Andris, A. Briš, M. Tarrés, S. Roldán-Gómez, J.
Roithová, X. Ribas, ACS Catal. 2018, 8, 10430; b) M. Font, F. Acuña-
Parés, T. Parella, J. Serra, J. M. Luis, J. Lloret-Fillol, M. Costas, X.
Ribas, Nat. Commun. 2014, 5, 4373.
[33] Typical D molecules are DMSO or NH=C(NMe2)2: Sladojevich, E.
McNeill, J. Börgel, S.-L. Zheng, T. Ritter, Angew. Chem. Int. Ed. 2015,
54, 3712; Angew. Chem. 2015, 127, 3783.
[34] a) O. Sala, N. Santschi, S. Jungen, H. P. Lüthi, M. Iannuzzi, N. Hauser,
A. Togni, Chem. Eur. J. 2016, 22, 1704; b) I. Kieltsch, P. Eisenberger,
A. Togni, Angew. Chem. Int. Ed. 2007, 46, 754; Angew. Chem. 2007,
119, 768.
This article is protected by copyright. All rights reserved.