954 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 3
De Martino et al.
(14) De Martino, G.; La Regina, G.; Coluccia, A.; Edler, M. C.; Barbera,
M. C.; Brancale, A.; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R.
Arylthioindoles, potent inhibitors of tubulin polymerization. J. Med.
Chem. 2004, 47, 6120-6123.
(15) Silvestri, R.; De Martino, G.; Artico, M.; Massa, S.; Marceddu, T.;
Loi, A. G.; Musiu, C.; La Colla, C. Indolyl Aryl Sulfones (IASs).
Part 1: SAR Studies and in vitro anti-HIV-1 activity against wt RT
and related mutants. J. Med. Chem. 2003, 46, 2482-2493.
(16) Chiosis, G.; Lucas, B.; Shtil, A.; Huezo, H.; Rosen, N. Development
of a purine-scaffold novel class of Hsp90 binders that inhibit the
proliferation of cancer cells and induce the degradation of Her2
tyrosine kinase. Bioorg. Med. Chem. 2002, 10, 3555-3564.
(17) Tripos SYBYL 7.0; Tripos Inc., 1699 South Hanley Rd, St. Louis,
was performed with MOE using the NVT environment for 600 ps
and constant temperature of 300 K using the MMFF94x force field
with a time step of 2 fs. Residues within 15 Å of the ligand were
allowed to move freely, keeping the rest of the protein fixed. The
binding site was soaked in a water sphere of 25 Å radius from the
sulfur atom of the ligand, and the total charge of the system included
in the water droplet did not require any adjustment. The water
molecules were energy minimized keeping the coordinates of the
protein-ligand complex fixed before the MD simulation. A distance
restraint of 25 Å with a weight of 100 between the oxygen atoms
of the water molecules and the sulfur atom of the ligand was also
applied.
(18) Molecular Operating Environment (MOE 2004.03). Chemical Com-
comp.com.
(19) Bai, R.; Covell, D. G.; Pei, X. F.; Ewell, J. B.; Nguyen, N. Y.; Brossi,
A. Hamel, E. Mapping the binding site of colchicinoids on â-tubu-
lin: 2-chloroacety-2-demethylthiocolchicine covalently reacts pre-
dominantly with cysteine 239 and secondarily with cysteine 354. J.
Biol. Chem. 2000, 275, 40443-40452.
(20) For spectral data and elemental analysis of 13, Schlosser, K. M.;
Krasutsky, A. P.; Hamilton, H. W.; Reed, J. E.; Sexton, K. A highly
efficient procedure for 3-sulfenylation of indole-2-carboxylates. Org.
Lett. 2004, 6, 819-821.
Acknowledgment. The authors would like to thank all the
technical staff involved for their support in the realization of
this project.
Supporting Information Available: 1H NMR and IR spectral
data, and elemental analyses of new compounds 5-12, 14, 16-
20, 22, 25, 27, 28, 30-34, and 36-41 are available free of charge
References
(1) Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E. Antimitotic natural
products combretastatin A-4 and combretastatin A-2.: studies on the
mechanism of their inhibition of the binding to colchicine to tubulin.
Biochemistry 1989, 28, 6984-6991.
(21) Offer, J.; Boddy, C. N. C.; Dawson, P. E. Extending Synthetic Access
to Proteins with a Removable Acyl Transfer Auxiliary. J. Am. Chem.
Soc. 2002, 124, 4642-4646.
(22) Boger, D. L.; Nishi, T. Diastereoselective Dieckmann condensation
suitable for introduction of the duocarmycin A C6 center: develop-
ment of a divergent strategy for the total synthesis of duocarmycins
A and SA. Bioorg., Med. Chem. 1995, 3, 67-77.
(23) Atkinson, J. G.; Hamel, P.; Girard, Y. A new synthesis of 3-arylth-
ioindoles. Synthesis 1988, 6, 480-481.
(24) Arcoria, A.; Scarlata, G. Reactivity of methoxythioanisoles with
N-bromosuccinimide and with bromine. Ann. Chim. 1964, 54, 139-
155.
(25) Savarin, C.; Srogl, J.; Liebeskind, L. S. A Mild, Nonbasic Synthesis
of Thioethers. The Copper-Catalyzed Coupling of Boronic Acids with
N-Thio(alkyl, aryl, heteroaryl)imides. Org. Lett. 2002, 4, 4309-4312.
(26) Ondetti, M. A.; Krapcho, J. Mercaptoacyl derivatives of substituted
prolines. US Patent 4316906, 1982.
(27) Hamel, E. Evaluation of antimitotic agents by quantitative compari-
sons of their effects on the polymerization of purified tubulin. Cell
Biochem. Biophys. 2003, 38, 1-21.
(28) Verdier-Pinard, P.; Lai, J.-Y.; Yoo, H.-D.; Yu, J.; Marquez, B.; Nagle,
D. G.; Nambu, M.; White, J. D.; Falck, J. R.; Gerwick, W. H.; Day,
B. W.; Hamel, E. Structure-activity analysis of the interaction of
curacin A, the potent colchicine site antimitotic agent, with tubulin
and effects of analogs on the growth of MCF-7 breast cancer cells.
Mol. Pharmacol. 1998, 53, 62-76.
(29) Jones, H. E.; Goddard, L.; Gee, J. M. W.; Hiscox, S.; Rubini, M.;
Barrow, D.; Knowlden, J. M.; Williams, S.; Wakeling, A. E.;
Nicholson, R. I. Insulin- like growth factor-1 receptor signalling and
acquired resistance to gefitnib (ZD1839; Iressa) in human breast and
prostate cancer cells. Endocr. Relat. Cancer 2004, 11, 793-814.
(30) Llauger, L.; He, H.; Kim, J.; Aguirre, J.; Rosen, N.; Peters, U.; Davies,
P.; Chiosis, G. 8-Arylsulfanyl and 8-arylsulfoxyl adenine derivatives
as inhibitors of the heat shock protein 90. J. Med. Chem. 2005, 48,
2892-2905.
(31) Llauger, L.; Felts, S.; Huezo, H.; Rosen, N.; Chiosis, G. Synthesis
of novel fluorescent probes for the molecular chaperone Hsp90.
Bioorg. Med. Chem. Lett. 2003, 13, 3975-3978.
(32) Ravelli, R. B. G.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar,
S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a
complex with colchicine and a stathmin-like domain. Nature 2004,
428, 198-202.
(2) Beckers, T.; Mahboobi, S. Natural, semisynthetic and synthetic
microtubule inhibitors for cancer therapy. Drugs Future 2003, 28,
767-785.
(3) Medina, J. C.; Houze, J.; Clark, D. L.; Schwendner, S.; Beckmann,
H.; Shan, B. Selective irreversible tubulin binders with efficacy
against multi-drug resistant tumor cells. Abstracts of Papers, 222nd
American Chemical Society National Meeting, Chicago, August 26-
30, 2001; ACS: Washington, DC.
(4) (a) Pellegrini, F.; Budman D. R. Review: tubulin function, action
of antitubulin drugs, and new drug development. Cancer InVest. 2005,
23, 264-273. (b) Iyer, S.; Chaplin, D. J.; Rosenthal, D. S.; Boulares,
A. H.; Li, L.-Y.; Smulson, M. E. Induction of apoptosis in
proliferating human endothelial cells by the tumor-specific antian-
giogenesis agent combretastatin A-4. Cancer Res. 1998, 58, 4510-
4514.
(5) Sridhare, M.; Macapinlac, M. J.; Goel, S.; Verdier-Pinard, D.; Fojo,
T.; Rothenberg, M.; Colevas, D. The clinical development of new
mitotic inhibitors that stabilize the microtubule. Anticancer Drugs
2004, 15, 553-555.
(6) Soltau, J.; Drevs, D. ZD-6126 (AstraZeneca). IDrugs 2004, 7, 380-
387.
(7) Mcintyre, J. A.; Castaner, J. Vinflunine: antimitotic vinca alkaloid.
Drugs Future 2004, 29, 574-580.
(8) (1) Bai, R.; Pettit, G. R.; Hamel, E. Binding of dolastatin 10 to tubulin
at a distinct site for peptide antimitotic agents near the exchangeable
nucleotide and vinca alkaloid sites. J. Biol. Chem. 1990, 265, 17141-
17149. (2) Hamel, E.; Covell, D. G. Antimitotic peptides and
depsipeptides. Curr. Med. Chem. - Anticancer Agents 2002, 2, 19-
53.
(9) Owa, T.; Yokoi, A.; Yamazaki, K.; Yoshimatsu, K.; Yamori, T.;
Nagasu, T. Array based structure and gene expression relationship
study of antitumor sulfonamides including N-[2-[(4-hydroxyphenyl)-
amino]-4-methoxybenzene sulfonamide and N-(3-chloro-7-indolyl)-
1,4-benzenenedisulfonamide. J. Med. Chem. 2002, 45, 4913-4922.
(11) Gastpar, R.; Goldbrunner, M.; Marko, D.; von Angerer, E. Methoxy-
substituted 3-formyl-2-phenylindoles inhibit tubulin polymerization.
J. Med. Chem. 1998, 41, 4965-4972.
(12) Medarde, M.; Ramos, A.; Caballero, E.; Pela´z-Lamamie´ de Clairac,
R.; Lo´pez, J. L.; Garc´ıa Gra´valos, D.; San Feliciano, A. Synthesis
and antineoplastic activity of combretastatin analogues: heterocom-
bretastatins. Eur. J. Med. Chem. 1998, 33, 71-77.
(13) Flynn, B. L., Hamel, E.; Jung, M. K. One-pot synthesis of benzo-
[b]furan and indole inhibitors of tubulin polymerization. J. Med.
Chem. 2002, 45, 2670-2673.
(33) Code “scoring.svl” obtained from SLV Exchange website http://
svl.chemcomp.com., Chemical Computing Group, Inc., Montreal,
Canada.
JM050809S