652
Y.-J. Guo et al. / Tetrahedron Letters 51 (2010) 649–652
NH2
X
NCS
H
N
H
N
H
N
X
N
+
S
SH
R
R'
X
R'
1
R'
R
R
2
B
A
CuBr/TBAB
H
N
N
S
N
H
N
S
Cu
X
R'
R
R
R'
C
Scheme 2. A possible mechanism.
Riemer, C. PCT Int. Appl. WO 2001097786, 2001 (Chem Abstr. 2001, 134,
252353); (c) Yoshida, M.; Hayakawa, I.; Hayashi, N.; Agatsuma, T.; Oda, Y.;
Tanzawa, F.; Iwasaki, S.; Koyama, K.; Furukawa, H.; Kurakatad, S.; Suganob, Y.
Bioorg. Med. Chem. Lett. 2005, 15, 3328; (d) Toya, Y.; Takagi, M.; Kondo, T.;
Nakata, H.; Isobe, M.; Goto, T. Bull. Soc. Chem. Jpn. 1992, 65, 2604; (e) Zamora, I.;
Oprea, T.; Cruciani, G.; Pastor, M.; Ungell, A.-L. J. Med. Chem. 2009, 52, 1744.
2. Suter, H.; Zutter, H. Helv. Chim. Acta 1967, 50, 1084.
3. Hays, S. J.; Rice, M. J.; Ortwine, D. F.; Johnson, G.; Schwartz, R. D.; Boyd, D. K.;
Copeland, L. F.; Vartanian, M. G.; Boxer, P. A. J. Pharm. Sci. 1994, 83, 1425.
4. Shirke, V. G.; Bobade, A. S.; Bhamaria, R. P.; Khadse, B. G.; Sengupta, S. R. Indian
Drugs 1990, 27, 350.
5. (a) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, Structure, Reactions,
Syntheses, and Applications, 2nd ed.; Wiley-VCH: Weinheim, 2003; (b) Victor, J.
C.; Nicholas, S. D. Tetrahedron Lett. 2006, 47, 3747; (c) Inamoto, K.; Hasegawa,
C.; Hiroya, K.; Doi, T. Org. Lett. 2008, 10, 5147.
6. Pd: (a) Benedí, C.; Bravo, F.; Uriz, P.; Fernández, E.; Claver, C.; Castillón, S.
Tetrahedron Lett. 2003, 44, 6073; Pd or Cu: (b) Joyce, L. L.; Evindar, G.; Batey, R.
A. Chem. Commun. 2004, 446; Cu: (c) Wang, J.-K.; Peng, F.; Jiang, J.-L.; Lu, Z.-J.;
Wang, L.-Y.; Bai, J.-F.; Pan, Y. Tetrahedron Lett. 2008, 49, 467; (d) Ma, D.; Xie, S.;
Xue, P.; Zhang, X.; Dong, J.; Jiang, Y. Angew. Chem., Int. Ed. 2009, 48, 4222.
7. Ding, Q.; He, X.; Wu, J. J. Comb. Chem. 2009, 11, 587.
8. For selected example of TBAB-promoted the cross-coupling reactions, see: (a)
Selvakumar, K.; Zapf, A.; Beller, M. Org. Lett. 2002, 4, 3031; (b) Yang, D.; Chen,
Y.-C.; Zhu, N.-Y. Org. Lett. 2004, 6, 1557. and references therein; (c) Li, J.-H.; Liu,
W.-J.; Xie, Y.-X. J. Org. Chem. 2005, 80, 5409; (d) Li, J.-H.; Li, J.-L.; Xie, Y.-X.
Synthesis 2007, 984; (e) Reetz, M. T.; de Vries, J. G. Chem. Commun. 2004, 1559;
(f) Liu, W.-J.; Xie, Y.-X.; Liang, Y.; Li, J.-H. Synthesis 2006, 860; (g) Bedford, R. B.;
Blake, M. E.; Butts, C. P.; Holder, D. Chem. Commun. 2003, 466.
9. For selected reviews, see: (a) Kondo, T.; Mitsudo, T.-A. Chem. Rev. 2000, 100,
3205; (b) Steven, V. L.; Andrew, W. T. Angew. Chem., Int. Ed. 2003, 42, 5400.
10. For selected papers on transition metal-catalyzed cross-coupling of aryl halides
with sulfur nucleophiles, see: Pd: (a) Fernández-Rodríguez, M. A.; Shen, Q.;
Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180; (b) Fernández-Rodríguez, M. A.;
Hartwig, J. F. J. Org. Chem. 2009, 74, 1663; (c) Li, G. Y. Angew. Chem., Int. Ed.
2001, 40, 1513; Cu: (d) Prudencio, S. H.; Kathleen, A. P.; Kiplin, R. G. Org. Lett.
2000, 2, 2019; (e) Chen, Y.-J.; Chen, H.-H. Org. Lett. 2006, 8, 5609; (f) Kwong, F.
Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517; (g) Wong, Y.-C.; Jayanth, T. T.; Cheng,
C.-H. Org. Lett. 2006, 8, 5613; (h) Rout, L.; Sen, T. K.; Punniyamurthy, T. Angew.
Chem., Int. Ed. 2007, 46, 5583; (i) Verma, A. K.; Singh, J.; Chaudhary, R.
Tetrahedron Lett. 2007, 49, 7199; (j) Herrero, M. T.; SanMartin; Domínguez, R.
Tetrahedron 2009, 65, 1500; (k) She, J.; Jiang, Z.; Wang, Y. Tetrahedron Lett.
2009, 50, 593; Fe/Cu: (l) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed.
2008, 47, 2880; (m) Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48,
5586; (n) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem., Int. Ed. 2009, 48, 348.
strate 1g, a heteroarylamine, with isothiocyanate 2a failed (entry
19). We were pleased to disclose that moderate yields were still
achieved from the reaction of 2-chlorobenzenamine (1i) with
isothiocyanates 2a or 2i under the optimized conditions (entries
20 and 21). Notably, 2-aminobenzenethiol (1i) was a suitable sub-
strate, affording the target product 3 in 76% yield (entry 22).
A possible mechanism was proposed as outlined in Scheme 2 on
the basis of the earlier proposed mechanism.6–10 Intermediate A
can be generated readily in situ from the reaction between 2-halo-
benzenamines 1 and isothiocyanates 2,6b followed by cross-cou-
pling to afford the target product with the aid of CuBr and
TBAB.6–10 Among the process, 2-halobenzenamines, 2-amin-
obenzothiazoles, and DMSO (a Lewis base) may play the role as
bases. We also deduced that TBAB might play two roles in the pres-
ent reaction: (i) a promoter or/and a ligand to activate and stabilize
the active Cu species; and (ii) phase-transfer catalyst for the inor-
ganic catalyst/solvent/substrate/product phases.8 Study on the de-
tailed mechanism is in progress.
In summary, a mild and efficient tandem method for the syn-
thesis of 2-aminobenzothiazoles has been demonstrated. The re-
sults showed that TBAB could improve the reaction. In the
presence of CuBr and TBAB, a variety of 2-halobenzenamines
underwent the tandem reaction with isothiocyanates smoothly in
moderate to excellent yields. It is noteworthy that the reaction is
conducted under mild, relatively low catalyst loading, and ligand-
and base-free conditions. Further application of the present system
in organic synthesis and study of the detailed mechanism are
underway.
Acknowledgments
The authors thank the National Natural Science Foundation of
China (No. 20872112), the Zhejiang Provincial Natural Science
Foundation of China (Nos. Y407116, Y4080169, and Y4080027),
and the Foundation of Wenzhou University (2007L004) for finan-
cial support.
11. Typical procedure:
A
mixture of 2-halobenzenamine
1
(0.3 mmol),
isothiocyanates 2 (0.3 mmol), CuBr (1 mol %), and TBABr (1 equiv) was stirred
in DMSO (2 mL) at 40 °C for the indicated time (Tables 1 and 2) until the
complete consumption of starting material as monitored by TLC. After the
reaction was complete, the mixture was washed with saturated brine and
extracted with diethyl ether. The organic layers were dried with Na2SO4 and
evaporated under vacuum, the residue was purified by flash column
chromatography (hexane/ethyl acetate) to afford the pure product. N-
Phenylbenzo[d]thiazol-2-amine (3): White solid, mp 158.1–159.3 °C (lit.12 mp
157.2–159.4 °C); 1H NMR (300 MHz, DMSO-d6) d: 10.47 (s, 1H), 7.82–7.78 (m,
3H), 7.59 (s, 1H), 7.39–7.33 (m, 3H), 7.16 (d, J = 8.5 Hz, 1H), 7.02 (d, J = 7.9 Hz,
1H); 13C NMR (75 MHz, DMSO-d6) d: 161.9, 152.4, 141.0, 130.3, 129.3, 126.2,
122.6, 122.4, 121.3, 119.5, 118.1; LRMS (EI, 70 eV) m/z (%): 226 (M+, 74), 225
(100), 96 (13).
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. For selected examples, see: (a) Brade, A. R.; Khadse, H. B.; Bobade, A. S. Indian
Drugs 1998, 35, 554; (b) Alanine, A.; Flohr, A.; Miller, A. K.; Norcross, R. D.;
12. Fajkusova, D.; Pazdera, P. Synthesis 2008, 1297.