Organic Letters
Letter
D. W. C. Chem. Rev. 2013, 113, 5322. (c) Yoon, T. P. ACS Catal. 2013, 3,
895.
(12) For reviews of organic photoredox catalysis, see: (a) Nicewicz, D.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
A.; Nguyen, T. M. ACS Catal. 2014, 4, 355. (b) Fukuzumi, S.; Ohkubo,
K. Org. Biomol. Chem. 2014, 12, 6059. (c) Hari, D. P.; Konig, B. Chem.
̈
Commun. 2014, 50, 6688. (d) Marin, M. L.; Santos-Juanes, L.; Arques,
A.; Amat, A. M.; Miranda, M. A. Chem. Rev. 2012, 112, 1710.
(e) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(13) (a) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N.
V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600. (b) Benniston,
A. C.; Elliott, K. J.; Harrington, R. W.; Clegg, W. Eur. J. Org. Chem. 2009,
Experimental procedures and spectral data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
́
2009, 253. (c) Joshi-Pangu, A.; Levesque, F.; Roth, H. G.; Oliver, S. F.;
Campeau, L.; Nicewicz, D. A.; DiRocco, D. A. J. Org. Chem. 2016, 81,
7244.
Notes
(14) For recent examples of organic transformations using 9-mesityl-
10-methylacridinum cations as photoredox catalysts, see: (a) Margrey,
K. A.; Nicewicz, D. A. Acc. Chem. Res. 2016, 49, 1997. (b) Cavanaugh, C.
L.; Nicewicz, D. A. Org. Lett. 2015, 17, 6082. (c) Romero, N. A.;
Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Science 2015, 349, 1326.
(d) Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2015,
137, 11340. (e) Gesmundo, N. J.; Grandjean, J.-M. M.; Nicewicz, D. A.
Org. Lett. 2015, 17, 1316. (f) Morse, P. D.; Nicewicz, D. A. Chem. Sci.
2015, 6, 270−274. (g) Zeller, M. A.; Riener, M.; Nicewicz, D. A. Org.
Lett. 2014, 16, 4810. (h) Romero, N.; Nicewicz, D. A. J. Am. Chem. Soc.
2014, 136, 17024. (i) Wilger, D. J.; Grandjean, J. M.; Lammert, T.;
Nicewicz, D. A. Nat. Chem. 2014, 6, 720. (j) Nguyen, T. M.; Manohar,
N.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2014, 53, 6198. (k) Perkowski,
A. J.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135, 10334. (l) Nguyen, T.
M.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135, 9588. (m) Wilger, D. J.;
Gesmundo, N. J.; Nicewicz, D. A. Chem. Sci. 2013, 4, 3160.
(n) Grandjean, J.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2013, 52,
3967. (o) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012, 134,
18577. (p) Ohkubo, K.; Iwata, R.; Miyazaki, S.; Kojima, T.; Fukuzumi, S.
Org. Lett. 2006, 8, 6079. (q) Xiang, M.; Meng, Q.; Gao, X.; Lei, T.; Chen,
B.; Tung, C.; Wu, L. Org. Chem. Front. 2016, 3, 486. (r) Xiang, M.;
Meng, Q.; Li, J.; Zheng, Y.; Ye, C.; Li, Z.; Chen, B.; Tung, C.; Wu, L.
Chem. - Eur. J. 2015, 21, 18080. (s) Zhang, Q.; Ban, Y.; Zhou, D.; Zhou,
P.; Wu, L.; Liu, Q. Org. Lett. 2016, 18, 5256.
(15) (a) Takashima, H.; Shinkai, S.; Hamachi, I. Chem. Commun. 1999,
2345. (b) Hewitt, S. H.; Filby, M. H.; Hayes, E.; Kuhn, L. T.; Kalverda, A.
P.; Webb, M. E.; Wilson, A. J. ChemBioChem 2017, 18, 223.
(16) Bordwell, F. G.; Zhang, X.; Satish, A.; Cheng, J.-P. J. Am. Chem.
Soc. 1994, 116, 6605.
(17) (a) Varki, A. Glycobiology 1993, 3, 97. (b) Dwek, R. A. Chem. Rev.
1996, 96, 683. (c) Davis, B. G. Chem. Rev. 2002, 102, 579.
(18) (a) Helenius, A.; Aebi, M. Science 2001, 291, 2364. (b) Rudd, P.
M.; Elliot, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. Science 2001, 291,
2370. (c) Kannagi, R. Curr. Opin. Struct. Biol. 2002, 12, 599. (d) Lowe, J.
B. Cell 2001, 104, 809.
(19) Horton, D.; Wander, J. D. In The Carbohydrates: Chemistry and
Biochemistry; Academic Press: New York, 1990; Vol. 4B, p 799.
(20) (a) Floyd, N.; Vijayakrishnan, B.; Koeppe, J. R.; Davis, B. G.
Angew. Chem., Int. Ed. 2009, 48, 7798. (b) Dere, R. T.; Zhu, X. Org. Lett.
2008, 10, 4641. (c) Bernardes, G. J. L.; Grayson, E. J.; Thompson, S.;
Chalker, J. M.; Errey, J. C.; El Oualid, F.; Claridge, T. D. W.; Davis, B. G.
Angew. Chem., Int. Ed. 2008, 47, 2244. (d) Bernardes, G. J. L.; Gamblin,
D. P.; Davis, B. G. Angew. Chem., Int. Ed. 2006, 45, 4007. (e) Gamblin, D.
P.; Garnier, P.; van Kasteren, S.; Oldham, N. J.; Fairbanks, A. J.; Davis, B.
G. Angew. Chem., Int. Ed. 2004, 43, 828. (f) Cohen, S. B.; Halcomb, R. L.
J. Am. Chem. Soc. 2002, 124, 2534. (g) Thayer, D. A.; Yu, H. N.; Galan,
M. C.; Wong, C. H. Angew. Chem., Int. Ed. 2005, 44, 4596. (h) Zhu, Y.;
van der Donk, W. A. Org. Lett. 2001, 3, 1189. (i) Zhu, Y.; Gieselman, M.
D.; Zhou, H.; Averin, O.; van der Donk, W. A. Org. Biomol. Chem. 2003,
1, 3304. (j) Zhu, X.; Pachamuthu, K.; Schmidt, R. R. J. Org. Chem. 2003,
68, 5641. (k) Zhu, X.; Schmidt, R. R. Chem. - Eur. J. 2004, 10, 875.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the University at Albany, State University of
New York, for financial support. We thank Prof. Alexander
Shekhtman (SUNY-Albany) and Prof. Zhang Wang (SUNY-
Albany) for NMR assistance. We also thank Dr. Andrew Roberts
(Memorial Sloan-Kettering Cancer Center) for helpful dis-
cussion and proofreading of the manuscript. The other Dr. Ting
Wang is acknowledged for help in preparing this article.
REFERENCES
■
(1) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
(2) (a) Clayden, J.; MacLellan, P. Beilstein J. Org. Chem. 2011, 7, 582.
(b) Sulphur-Containing Drugs and Related Organic Compounds; Damani,
L. A., Ed.; Wiley: New York, 1989. (c) Jacob, D. Nat. Prod. Rep. 2006, 23,
851.
(3) For the utility of thiyl radicals in organic synthesis, see: Den
́ ̀
es, F.;
Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587.
(4) For applications of the thiol−ene reaction, see: (a) Hoyle, C. E.;
Lee, T. Y.; Roper, T. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5301.
(b) ten Brummelhuis, N.; Diehl, C.; Schlaad, H. Macromolecules 2008,
41, 9946. (c) Sletten, E.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009, 48,
6974. (d) Hoyle, C. E.; Bowman, C. N. Angew. Chem., Int. Ed. 2010, 49,
1540.
(5) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004. (b) Finn, M. G.; Fokin, V. V. Chem. Soc. Rev. 2010, 39,
1231.
(6) (a) Tyson, E. L.; Ament, M. S.; Yoon, T. P. J. Org. Chem. 2013, 78,
2046. (b) Tyson, E. L.; Niemeyer, Z. L.; Yoon, T. P. J. Org. Chem. 2014,
79, 1427.
(7) Keylor, M. H.; Park, J. E.; Wallentin, C.-J.; Stephenson, C. R. J.
Tetrahedron 2014, 70, 4264.
(8) Bhat, V. T.; Duspara, P. A.; Seo, S.; Abu Bakar, N. S. B.; Greaney, M.
F. Chem. Commun. 2015, 51, 4383.
(9) (a) DeForest, C. A.; Anseth, K. S. Nat. Chem. 2011, 3, 925.
(b) DeForest, C. A.; Anseth, K. S. Angew. Chem., Int. Ed. 2012, 51, 1816.
(c) Shih, H.; Lin, C. C. Macromol. Rapid Commun. 2013, 34, 269.
(d) Shih, H.; Fraser, A. K.; Lin, C. C. ACS Appl. Mater. Interfaces 2013, 5,
1673. (e) Limnios, D.; Kokotos, C. G. Adv. Synth. Catal. 2017, 359, 323.
(10) For recent examples of biomolecule conjugations and
biomolecule-compatible reactions induced by visible light, see:
(a) Fancy, D. A.; Kodadek, T. Proc. Natl. Acad. Sci. U. S. A. 1999, 96,
6020. (b) Chen, Y.; Kamlet, A. S.; Steinman, J. B.; Liu, D. R. Nat. Chem.
2011, 3, 146. (c) Sato, S.; Nakamura, H. Angew. Chem., Int. Ed. 2013, 52,
8681. (d) Hu, C.; Chen, Y. Tetrahedron Lett. 2015, 56, 884. (e) Huang,
H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136,
2280. (f) Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem. Commun.
2015, 51, 5275.
(11) For reviews of visible-light photoredox catalysis with transition
metal complexes, see: (a) Narayanam, J. M. R.; Stephenson, C. R. J.
Chem. Soc. Rev. 2011, 40, 102. (b) Prier, C. K.; Rankic, D. A.; MacMillan,
D
Org. Lett. XXXX, XXX, XXX−XXX