Letter
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 24 7961
associated with an improvement of liver function in high fat fed
mice with a concomitant reduction of steatosis and fibrosis.31
In conclusion, while our recent studies have univocally
demonstrated the promising therapeutic potential of pharma-
cological activation of TGR5 for the treatment of diabetes,
obesity, and related disorders such as NASH, the present
results call for additional pharmacokinetic evaluation in
support of the selection of S-EMCA (8) as a novel lead
candidate to advance into clinical studies.
(13) Parks, D. J.; Blanchard, S. G.; Bledsoe, R. K.; Chandra, G.;
Consler, T. G.; Kliewer, S. A.; Stimmel, J. B.; Willson, T. M.;
Zavacki, A. M.; Moore, D. D.; Lehmann, J. M. Bile acids: natural
ligands for an orphan nuclear receptor. Science 1999, 284, 1365–
1368.
(14) Pellicciari, R.; Costantino, G.; Camaioni, E.; Sadeghpour, B. M.;
Entrena, A.; Willson, T. M.; Fiorucci, S.; Clerici, C.; Gioiello, A.
Bile acid derivatives as ligands of the farnesoid X receptor. Synth-
esis, evaluation, and structure-activity relationship of a series of
body and side chain modified analogues of chenodeoxycholic acid.
J. Med. Chem. 2004, 47, 4559–4569.
(15) Pellicciari, R.; Fiorucci, S.; Camaioni, E.; Clerici, C.; Costantino,
G.; Maloney, P. R.; Morelli, A.; Parks, D. J.; Willson, T. M.
6Alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and
selective FXR agonist endowed with anticholestatic activity.
J. Med. Chem. 2002, 45, 3569–3572.
(16) Costantino, G.; Macchiarulo, A.; Entrena-Guadix, A.; Camaioni,
E.; Pellicciari, R. Binding mode of 6ECDCA, a potent bile acid
agonist of the farnesoid X receptor (FXR). Bioorg. Med. Chem.
Lett. 2003, 13, 1865–1868.
Acknowledgment. This work was supported by Intercept
Pharmaceuticals (New York, NY), ANR PHYSIO (BASE),
EU (Eugene2), EFPL, SNF. We thank Luciano Adorini and
Gianni Rizzo of Intercept for helpful discussions. Thanks are
due also to Erregierre (Bergamo, Italy) for the gift of bile acids
as starting materials.
(17) Costantino, G.; Entrena-Guadix, A.; Macchiarulo, A.; Gioiello,
A.; Pellicciari, R. Molecular dynamics simulation of the ligand
binding domain of farnesoid X receptor. Insights into helix-12
stability and coactivator peptide stabilization in response to ago-
nist binding. J. Med. Chem. 2005, 48, 3251–3259.
(18) Pellicciari, R.; Sato, H.; Gioiello, A.; Costantino, G.; Macchiarulo,
A.; Sadeghpour, B. M.; Giorgi, G.; Schoonjans, K.; Auwerx, J.
Nongenomic actions of bile acids. Synthesis and preliminary
characterization of 23-and 6,23-alkyl-substituted bile acid deriva-
tives as selective modulators for the G-protein coupled receptor
TGR5. J. Med. Chem. 2007, 50, 4265–4268.
(19) Macchiarulo, A.; Gioiello, A.; Thomas, C.; Massarotti, A.; Nuti,
R.; Rosatelli, E.; Sabbatini, P.; Schoonjans, K.; Auwerx, J.;
Pellicciari, R. Molecular field analysis and 3D-quantitative struc-
ture-activity relationship study (MFA 3D-QSAR) unveil novel
features of bile acid recognition at TGR5. J. Chem. Inf. Model.
2008, 48, 1792–1801.
(20) Chen, X.; Mellon, R. D.; Yang, L.; Dong, H.; Oppenheim, J. J.;
Howard, O. M. Regulatory effects of deoxycholic acid, a compo-
nent of the anti-inflammatory traditional Chinese medicine Niu-
huang, on human leukocyte response to chemoattractants.
Biochem. Pharmacol. 2002, 63, 533–541.
(21) Roda, A.; Hofmann, A. F.; Mysels, K. J. The influence of bile salt
structure on self-association in aqueous solutions. J. Biol. Chem.
1983, 258, 6362–6370.
(22) Hofmann, A. F.; Roda, A. Physicochemical properties of bile acids
and their relationship to biological properties: an overview of the
problem. J. Lipid Res. 1984, 25, 1477–1489.
(23) Roda, A.; Fini, A. Effect of nuclear hydroxy substituents on
aqueous solubility and acidic strength of bile acids. Hepatology
1984, 4, 72S–76S.
(24) Nagengast, F. M.; Grubben, M. J.; van Munster, I. P. Role of bile
acids in colorectal carcinogenesis. Eur. J. Cancer 1995, 31A, 1067–
1070.
Supporting Information Available: Description of the synthe-
tic procedures, biological methods, and analytical analysis of all
target compounds. This material is available free of charge via
References
(1) Recent reviews on FXR: (a) Thomas, C.; Pellicciari, R.; Pruzanski,
M.; Auwerx, J.; Schoonjans, K. Targeting bile-acid signalling
for metabolic diseases. Nat. Rev. Drug Discovery 2008, 7, 678–
693. (b) Tiwari, A.; Maiti, P. TGR5: an emerging bile acid G-protein-
coupled receptor target for the potential treatment of metabolic
disorders. Drug Discovery Today 2009, 14, 523–530.
(2) Recent reviews on TGR5: (a) Lefebvre, P.; Cariou, B.; Lien, F.;
Kuipers, F.; Staels, B. Role of bile acids and bile acid receptors in
metabolic regulation. Physiol. Rev. 2009, 89, 147–191. (b) Hylemon,
P. B.; Zhou, H.; Pandak, W. M.; Ren, S.; Gil, G.; Dent, P. Bile acids as
regulatory molecules. J. Lipid Res. 2009, 50, 1509–1520. (c) Thomas,
C.; Auwerx, J.; Schoonjans, K. Bile acids and the membrane bile acid
receptor TGR5-connecting nutrition and metabolism. Thyroid 2008,
18, 167–174.
(3) Maruyama, T.; Miyamoto, Y.; Nakamura, T.; Tamai, Y.; Okada,
H.; Sugiyama, E.; Nakamura, T.; Itadani, H.; Tanaka, K. Identi-
fication of membrane-type receptor for bile acids (M-BAR).
Biochem. Biophys. Res. Commun. 2002, 298, 714–719.
(4) Kawamata, Y.; Fujii, R.; Hosoya, M.; Harada, M.; Yoshida, H.;
Miwa, M.; Fukusumi, S.; Habata, Y.; Itoh, T.; Shintani, Y.;
Hinuma, S.; Fujisawa, Y.; Fujino, M. A G protein-coupled recep-
tor responsive to bile acids. J. Biol. Chem. 2003, 278, 9435–9440.
(5) Sato, H.; Macchiarulo, A.; Thomas, C.; Gioiello, A.; Une, M.;
Hofmann, A. F.; Saladin, R.; Schoonjans, K.; Pellicciari, R.;
Auwerx, J. Novel potent and selective bile acid derivatives as
TGR5 agonists: biological screening, structure-activity relation-
ships, and molecular modeling studies. J. Med. Chem. 2008, 51,
1831–1841.
(25) Ridlon, J. M.; Kang, D. J.; Hylemon, P. B. Bile salt biotransforma-
tions by human intestinal bacteria. J. Lipid Res. 2006, 47, 241–259.
(26) Roda, A.; Pellicciari, R.; Cerre, C.; Polimeni, C.; Sadeghpour, B.;
Marinozzi, M.; Forti, G. C.; Sapigni, E. New 6-substituted bile
acids: physico-chemical and biological properties of 6R-methyl
ursodeoxycholic acid and 6R-methyl-7-epicholic acid. J. Lipid
Res. 1994, 35, 2268–2279.
(27) Aldini, R.; Roda, A.; Labate, A. M.; Cappelleri, G.; Roda, E.;
Barbara, L. Hepatic bile acid uptake: effect of conjugation, hydro-
xyl and keto groups, and albumin binding. J. Lipid Res. 1982, 23,
1167–1173.
(6) Katsuma, S.; Hirasawa, A.; Tsujimoto, G. Bile acids promote
glucagon-like peptide-1 secretion through TGR5 in a murine
enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun.
2005, 329, 386–390.
(7) Watanabe, M.; Houten, S. M.; Mataki, C.; Christoffolete, M. A.;
Kim, B. W.; Sato, H.; Messaddeq, N.; Harney, J. W.; Ezaki, O.;
Kodama, T.; Schoonjans, K.; Bianco, A. C.; Auwerx, J. Bile acids
induce energy expenditure by promoting intracellular thyroid
hormone activation. Nature 2006, 439, 484–489.
(28) Aldini, R.; Roda, A.; Simoni, P.; Lenzi, P.; Roda, E. Uptake of bile
acids by perfused rat liver: evidence of a structure-activity rela-
tionship. Hepatology 1989, 10, 840–845.
(29) Roda, A.; Aldini, R.; Grigolo, B.; Simoni, P.; Roda, E.; Pellicciari,
R.; Lenzi, P. L.; Natalini, B. 23-Methyl-3R,7β-dihydroxy-5β-cho-
lan-24-oic acid: dose-response study of biliary secretion in rat.
Hepatology 1988, 8, 1571.
(30) Halilbasic, E.; Fiorotto, R.; Fickert, P.; Marschall, H. U.; Moustafa,
T.; Spirli, C.; Fuchsbichler, A.; Gumhold, J.; Silbert, D.;
Zatloukal, K.; Langner, C.; Maitra, U.; Denk, H.; Hofmann, A. F.;
Strazzabosco, M.; Trauner, M. Side chain structure determines
unique physiologic and therapeutic properties of norursodeoxycholic
acid in Mdr2-/- mice. Hepatology 2009, 49, 1972–1981.
(31) Thomas, C.; Gioiello, A.; Noriega, L.; Strehle, A.; Oury, J.; Rizzo,
G.; Macchiarulo, A.; Yamamoto, H.; Mataki, C.; Pruzanski, M.;
Pellicciari, R.; Auwerx, J.; Schoonjans, K. TGR5-mediated bile acid
sensing controls glucose homeostasis. Cell Metab. 2009, 10, 167–177.
(8) Keitel, V.; Reinehr, R.; Gatsios, P.; Rupprecht, C.; Gorg, B.;
Selbach, O.; Haussinger, D.; Kubitz, R. The G-protein coupled
bile salt receptor TGR5 is expressed in liver sinusoidal endothelial
cells. Hepatology 2007, 45, 695–704.
(9) Keitel, V.; Donner, M.; Winandy, S.; Kubitz, R.; Haussinger, D.
Expression and function of the bile acid receptor TGR5 in Kupffer
cells. Biochem. Biophys. Res. Commun. 2008, 372, 78–84.
(10) Keitel, V.; Cupisti, K.; Ullmer, C.; Knoefel, W. T.; Kubitz, R.;
Haussinger, D. The membrane-bound bile acid receptor TGR5 is
localized in the epithelium of human gallbladders. Hepatology
2009, 50, 861–870.
(11) Wang, H. B.; Chen, J.; Hollister, K.; Sowers, L. C.; Forman, B. M.
Endogenous bile acids are ligands for the nuclear receptor FXR
BAR. Mol. Cell 1999, 3, 543–553.
(12) Makishima, M.; Okamoto, A. Y.; Repa, J. J.; Tu, H.; Learned, R. M.;
Luk, A.; Hull, M. V.; Lustig, K. D.; Mangelsdorf, D. J.; Shan, B.
Identification of a nuclear receptor for bile acids. Science 1999,284, 1362.