905 cmϪ1; 1H NMR (CDCl3) δ = 2.01 (3H, s, -OAc), 2.05 (3H, s,
-OAc), 2.06 (3H, s, -OAc), 2.15 (3H, s, -OAc), 3.29 (1H, dd,
J = 11.2, 10.3 Hz, 1-CH), 3.82 (1H, td, J = 6.5, 1.2 Hz, 5-CH),
4.09 (2H, d, J = 6.5 Hz, 6-CH), 4.19 (1H, dd, J = 11.2, 5.5 Hz,
1-CHЈ), 5.04 (1H, dd, J = 10.3, 3.4 Hz, 3-CH), 5.23 (1H, td,
J = 10.3, 5.5 Hz, 2-CH), 5.45 (1H, dd, J = 3.4, 1.2 Hz, 4-CH);
MS (FABϩ) Found: m/z (M ϩ H) 333.
152.0(d), 161.1(s); HRMS (FABϩ) Found: m/z (M ϩ H)
754.3322, Calcd for C40H53N5O4PSi2: (M ϩ H)ϩ = 754.3374.
2Ј-Deoxy-3Ј,5Ј-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-
adenosine25
Viscous oil; IR (KBr) 3330, 3170, 2945, 2865, 1650, 1600, 1465,
1
1250, 1140, 1120, 1090, 1075, 1040, 885, 700 cmϪ1; H NMR
(CDCl3) δ = 1.02–1.13 (28H, m, isopropyl), 2.64 (1H, ddd,
J = 13.3, 9.1, 7.4 Hz, 2Ј-CH), 2.71 (1H, ddd, J = 13.3, 7.5, 2.7
Hz, 2Ј-CHЈ), 3.90 (1H, ddd, J = 7.5, 4.4, 3.5 Hz, 4Ј-CH), 4.03
(1H, dd, J = 12.4, 3.5 Hz, 5Ј-CH), 4.07 (1H, dd, J = 12.4, 4.4
Hz, 5Ј-CHЈ), 4.95 (1H, dt, J = 9.1, 7.5 Hz, 3Ј-CH), 5.67 (2H, br
s, -NH2), 6.29 (1H, dd, J = 7.4, 2.7 Hz, 1Ј-CH), 8.04 (1H, s,
ArH), 8.32 (1H, s, ArH); HRMS (FABϩ) Found: m/z (M ϩ H)
494.2607, Calcd for C22H40N5O4Si2: (M ϩ H)ϩ = 494.2619.
1,4-Anhydro-2,3,5-tri-O-benzyl-D-ribitol21
Oil; IR (Neat) 3060, 3030, 2870, 1495, 1455, 1360, 1210, 1125,
1030, 740, 700 cmϪ1 1H NMR (CDCl3) δ = 3.51 (1H, dd,
;
J = 10.6, 4.3 Hz, 5-CH), 3.62 (1H, dd, J = 10.6, 3.3 Hz, 5-CHЈ),
3.91–4.09 (4H, m, 1-CH, 2-CH and 3-CH), 4.14–4.17 (1H, m,
4-CH), 4.49–4.64 (6H, m, -OCH2Ph), 7.24–7.36 (15H, m, ArH);
MS (FABϩ) Found: m/z (M ϩ K) 443.
1,4-Anhydro-2-deoxy-3,5-di-O-benzyl-D-erythropentitol22
Acknowledgements
Syrup; IR (Neat) 3060, 3030, 2860, 1495, 1455, 1365, 1205,
We are grateful for financial support from a Grant-in-Aid for
Scientific Research (10640511) from the Ministry of Education,
Science, and Culture of Japan. We thank Mr Atushi Ryokawa
for the partial preparation of organodisilanes.
1
1100, 1030, 740, 700 cmϪ1; H NMR (CDCl3) δ = 2.00–2.04
(2H, m, 2-CH), 3.48 (1H, dd, J = 10.1, 5.1 Hz, 5-CH), 3.53 (1H,
dd, J = 10.1, 5.1 Hz, 5-CHЈ), 3.90–4.10 (4H, m, 1-CH, 3-CH
and 4-CH), 4.49 (1H, d, J = 12.1 Hz, -OCH2Ph), 4.53 (1H,
d, J = 12.1 Hz, -OCH2Ph), 4.55 (2H, s, -OCH2Ph), 7.26–7.38
(10H, m, ArH); 13C NMR (CDCl3) δ = 32.7(t), 67.7(t), 71.0(t),
71.4(t), 73.6(t), 80.9(d), 83.2(d), 127.8(d), 127.8(d), 127.8(d),
128.5(d), 128.6(d), 138.3(s); MS (FABϩ) Found: m/z (M ϩ K)
337.
Notes and references
1 B. Giese, Radicals in Organic Synthesis: Formation of Carbon-
Carbon Bonds, ed. J. E. Baldwin, Pergamon Press, Oxford, 1986;
J. Fossey, D. Lefort and J. Sorba, Free Radicals in Organic
Chemistry, Wiley, Chichester, 1995.
2 C. Chatgilialoglu, K. U. Ingold and J. C. Scaiano, J. Am. Chem.
Soc., 1982, 104, 5123; J. Lusztyk, B. Maillard and K. U. Ingold,
J. Org. Chem., 1986, 51, 2457; B. Giese, B. Kopping and
C. Chatgilialoglu, Tetrahedron Lett., 1989, 30, 681; B. Giese and
K. J. Kulicke, Synlett, 1990, 91; D. H. R. Barton, D. O. Jang
and J. Cs. Jaszberenyi, Tetrahedron Lett., 1990, 31, 4681; A. Alberti
and C. Chatgilialoglu, Tetrahedron, 1990, 46, 3963; S. J. Cole,
J. N. Kirwan, B. P. Roberts and C. R. Willis, J. Chem. Soc., Perkin
Trans. 1, 1991, 103; D. H. R. Barton, D. O. Jang and J. Cs.
Jaszberenyi, Synlett, 1991, 435; D. H. R. Barton, D. O. Jang and
J. Cs. Jaszberenyi, Tetrahedron Lett., 1991, 32, 2569; D. H. R.
Barton, D. O. Jang and J. Cs. Jaszberenyi, Tetrahedron Let., 1991,
32, 7187; C. Chatgilialoglu, Acc. Chem. Res., 1992, 25, 188; C.
Chatgilialoglu, Chem. Rev., 1995, 95, 1229; M. B. Haque and
B. P. Roberts, Tetrahedron Lett., 1996, 37, 9123.
3 M. Ballestri, C. Chatgilialoglu, K. B. Clark, D. Griller, B. Giese and
B. Kopping, J. Org. Chem., 1991, 56, 678.
4 D. H. R. Barton, D. O. Jang and J. Cs. Jaszberenyi, Tetrahedron,
1993, 49, 7193.
5 O. Yamazaki, H. Togo, G. Nogami and M. Yokoyama, Bull. Chem.
Soc. Jpn., 1997, 70, 2519.
Ethyl 2-deoxy-3,4,6-tri-O-acetyl-ꢁ-D-arabinohexopyranoside23
Oil; IR (Neat) 2980, 1745, 1440, 1370, 1240, 1130, 1050, 980
cmϪ1
;
1H NMR (CDCl3) δ = 1.22 (3H, t, J = 7.1 Hz,
-OCH2CH3), 1.82 (1H, ddd, J = 12.8, 11.5, 3.7 Hz, 2-CH), 2.01
(3H, s, -OAc), 2.04 (3H, s, -OAc), 2.10 (3H, s, -OAc), 2.23 (1H,
ddd, J = 12.8, 5.4, 1.2 Hz, 2-CHЈ), 3.46 (1H, dq, J = 9.7, 7.1 Hz,
-OCH2CH3), 3.69 (1H, dq, J = 9.7, 7.1 Hz, -OCH2CH3), 3.98
(1H, ddd, J = 10.1, 4.6, 2.3 Hz, 5-CH), 4.05 (1H, dd, J = 12.1,
2.3 Hz, 6-CH), 4.31 (1H, dd, J = 12.1, 4.6 Hz, 6-CHЈ), 4.96–
5.02 (2H, m, 1-CH and 4-CH), 5.34 (1H, ddd, J = 11.5, 9.5, 5.4
Hz, 3-CH); MS (FABϩ) Found: m/z (M Ϫ OEt) 273.
Ethyl 2-deoxy-3,4,6-tri-O-acetyl-ꢀ-D-arabinohexopyranoside24
Mp 83.5–84.5 ЊC (lit.,24 mp 80–81 ЊC); IR (KBr) 3000, 2975,
2895, 1740, 1440, 1380, 1230, 1140, 1095, 1050, 960, 920 cmϪ1
;
1H NMR (CDCl3) δ = 1.23 (3H, t, J = 7.1 Hz, -OCH2CH3), 1.75
(1H, ddd, J = 12.6, 11.5, 9.8 Hz, 2-CH), 2.03 (3H, s, -OAc), 2.04
(3H, s, -OAc), 2.09 (3H, s, -OAc), 2.31 (1H, ddd, J = 12.6, 4.8,
2.2 Hz, 2-CHЈ), 3.52–3.63 (2H, m, 5-CH and -OCH2CH3), 3.94
(1H, dq, J = 9.5, 7.1 Hz, -OCH2CH3), 4.11 (1H, dd, J = 12.2, 2.5
Hz, 6-CH), 4.30 (1H, dd, J = 12.2, 4.8 Hz, 6-CHЈ), 4.58 (1H,
dd, J = 9.8, 2.2 Hz, 1-CH), 4.96–5.06 (2H, m, 3-CH and 4-CH);
MS (FABϩ) Found: m/z (M Ϫ OEt) 273.
6 O. Yamazaki, H. Togo, S. Matsubayashi and M. Yokoyama,
Tetrahedron Lett., 1998, 39, 1921; O. Yamazaki, H. Togo,
S. Matsubayashi and M. Yokoyama, Tetrahedron, 1999, 55, 3735.
7 A mixture of 1-deoxy derivative (A) and 2-deoxy derivative (B) was
obtained as reduction products. The ratios of A and B were
determined to be 92:8 (Et3B) and 72:28 (AIBN) from 1H NMR
spectra, respectively.
8 H.-G. Korth, R. Sustmann, K. S. Gröninger, M. Leisung and
B. Giese, J. Org. Chem., 1988, 53, 4364.
2Ј-Deoxy-3Ј,5Ј-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-
N-(triphenylphosphoranylidene)adenosine
9 Direct reduction product (C) and N-deprotected reduction product
(D) was obtained. The ratios of C and D were 95:5 (Et3B) and 82:18
(AIBN), respectively.
Viscous oil; IR (KBr) 3060, 2945, 2865, 1580, 1450, 1440, 1355,
1285, 1110, 1080, 1035, 885, 720, 690 cmϪ1; 1H NMR (CDCl3)
δ = 1.01–1.11 (28H, m, isopropyl), 2.59 (1H, ddd, J = 13.2, 8.5,
7.6 Hz, 2Ј-CH), 2.67 (1H, ddd, J = 13.2, 7.5, 2.9 Hz, 2Ј-CHЈ),
3.87 (1H, d br t, J = 7.2, 4.4 Hz, 4Ј-CH), 4.02 (1H, d, J = 4.8 Hz,
5Ј-CH), 4.02 (1H, d, J = 3.9 Hz, 5Ј-CHЈ), 4.94 (1H, m, 3Ј-
CH), 6.27 (1H, dd, J = 7.6, 2.9 Hz, 1Ј-CH), 7.42–7.55 (9H,
m, ArH), 7.87–7.93 (6H, m, ArH), 7.96 (1H, s, ArH), 8.05 (1H,
s, ArH); 13C NMR (CDCl3) δ = 12.6(d), 13.0(d), 13.2(d),
13.4(d), 17.0(q), 17.0(q), 17.1(q), 17.2(q), 17.4(q), 17.4(q),
17.5(q), 17.6(q), 40.3(t), 62.5(t), 70.8(d), 82.8(d), 85.1(d),
127.1(s), 127.3(s), 128.4(d), 128.5(d), 128.6(s), 129.4(s),
131.9(d), 131.9(d), 133.4(d), 133.4(d), 137.6(d), 149.3(s),
10 T. Nakano, H. Nakamura and Y. Nagai, Chem. Lett., 1989, 83.
11 D. L. J. Clive, G. J. Chittattu, V. Farina, W. A. Kiel, S. M. Munchen,
C. G. Russell, A. Singh, C. K. Wong and N. J. Curtis, J. Am. Chem.
Soc., 1980, 102, 4438.
12 T. G. Back, V. I. Birss, M. Edwards and M. V. Krishna, J. Org.
Chem., 1988, 53, 3815.
13 T. G. Back, D. L. Baron and K. Yang, J. Org. Chem., 1993, 58, 2407.
14 M. Sakakibara, K. Katsumata, Y. Watanabe, T. Toru and Y. Ueno,
Synthesis, 1992, 377.
15 M. A. Lucas and C. H. Schiesser, J. Org. Chem., 1996, 61, 5754.
16 A. Mallet, J.-M. Mallet and P. Sinaÿ, Tetrahedron: Asymmetry, 1994,
5, 2593.
17 H. Togo, T. Muraki and M. Yokoyama, Synthesis, 1995, 155.
18 W. He, H. Togo, Y. Waki and M. Yokoyama, J. Chem. Soc., Perkin
Trans. 1, 1998, 2425.
J. Chem. Soc., Perkin Trans. 1, 1999, 2891–2896
2895