C O M M U N I C A T I O N S
purification and handling. The reaction also showed good mismatch
discrimination, dropping in initial rate by 37- and 31-fold opposite
templates with the mismatch opposite the azido (8b) and fluorogenic
(8c) components, respectively (Figure 2).
Further work will be needed to see how efficient the activation
of fluorescence can be made by adjusting the length and confor-
mational properties of the linkers to the azide and ester. For in
vivo use, additional substitution of the fluorogenic component may
be necessary to increase the stability of the phosphine to oxidation
and to minimize fluorescence activation by enzymatic hydrolysis.5b
The PNAs will also have to be rendered membrane-permeable and
may also have to be lengthened to bind efficiently to the low
concentration of mRNAs present inside human cells.19
Figure 1. Rate of formation of 3 from 100 µM 1 as a function of the
concentration of 2 in 2:5 CH3CN/H2O, 10 mM phosphate, pH 7, at room
temperature. The amount of 3 was monitored by its absorbance at 454 nm.
Acknowledgment. Dedicated to Peter Dervan on the occasion
of his 60th birthday. Supported by NIH CA92477 with assistance
of the Washington University Mass Spectrometry Resource with
support from Grant No. P41RR0954.
Supporting Information Available: Experimental procedures and
analytical data for the synthesis of compounds 1, 2, 4-7, and analysis
of the kinetics. This material is available free of charge via the Internet
References
(1) For reviews, see: (a) Dirks, R. W.; Molenaar, C.; Tanke, H. J. Histochem.
Cell Biol. 2001, 115, 3-11. (b) Paroo, Z.; Corey, D. R. J. Cell Biochem.
2003, 90, 437-442.
(2) For recent examples of single molecule mRNA detection, see: (a) Yao,
G.; Fang, X.; Yokota, H.; Yanagida, T.; Tan, W. Chemistry 2003, 9, 5686-
5692. (b) Knemeyer, J. P.; Herten, D. P.; Sauer, M. Anal. Chem. 2003,
75, 2147-2153.
(3) (a) Tyagi, S.; Kramer, F. R. Nat. Biotechnol. 1996, 14, 303-308. (b)
Sokol, D. L.; Zhang, X.; Lu, P.; Gewirtz, A. M. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 11538-11543. (c) Fang, X.; Mi, Y.; Li, J. J.; Beck, T.;
Schuster, S.; Tan, W. Cell Biochem. Biophys. 2002, 37, 71-81. (d) Xi,
C.; Balberg, M.; Boppart, S. A.; Raskin, L. Appl. EnViron. Microbiol.
2003, 69, 5673-5678.
Figure 2. Rate of formation of 10 from 2 µM 6 in 10 mM phosphate, pH
7, at room temperature in the presence or absence of 5 µM 7 and 5 µM 8a,
b, or c. The amount of 10 was monitored by its fluorescence at 514 nm
(454 nm excitation). See SI for expanded plots of the data.
Scheme 3
(4) (a) Cardullo, R. A.; Agrawal, S.; Flores, C.; Zamecnik, P. C.; Wolf, D.
E. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 8790-8794. (b) Tsuji, A.;
Koshimoto, H.; Sato, Y.; Hirano, M.; Sei-Iida, Y.; Kondo, S.; Ishibashi,
K. Biophys. J. 2000, 78, 3260-3274. (c) Tsuji, A.; Sato, Y.; Hirano, M.;
Suga, T.; Koshimoto, H.; Taguchi, T.; Ohsuka, S. Biophys. J. 2001, 81,
501-515. (d) Ishibashi, K.; Tsuji, A. Anal. Chem. 2003, 75, 2715-2723.
(5) (a) Ma, Z.; Taylor, J. S. Bioconjugate Chem. 2003, 14, 679-683. (b)
Ma, Z.; Taylor, J. S. Bioorg. Med. Chem. 2001, 9, 2501-2510.
(6) (a) Sando, S.; Kool, E. T. J. Am. Chem. Soc. 2002, 124, 9686-9687. (b)
Sando, S.; Kool, E. T. J. Am. Chem. Soc. 2002, 124, 2096-2097. (c)
Sando, S.; Abe, H.; Kool, E. T. J. Am. Chem. Soc. 2004, 126, 1081-
1087. (d) Sando, S.; Sasaki, T.; Kanatani, K.; Aoyama, Y. J. Am. Chem.
Soc. 2003, 125, 15720-15721.
(7) Ma, Z.; Taylor, J.-S. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 11159-
11163.
(8) (a) Staudinger, H.; Meyer, J. HelV. Chim. Acta 1919, 2, 635-646. (b)
Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353-1406.
(9) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007-2010.
(10) For a recent review, see: Kohn, M.; Breinbauer, R. Angew. Chem., Int.
Ed. 2004, 43, 3106-3116.
m-cresol. PNA 6 was prepared by coupling the ester 1 to the amino
terminal amine prior to cleavage and deprotection.
(11) Lemieux, G. A.; De Graffenried, C. L.; Bertozzi, C. R. J. Am. Chem.
Soc. 2003, 125, 4708-4709.
(12) Li, X.; Taylor, J. S. Bioorg. Med. Chem. 2004, 12, 545-552.
(13) Dyke, J. M.; Groves, A. P.; Morris, A.; Ogden, J. S.; Dias, A. A.; Oliveira,
A. M. S.; Costa, M. L.; Barros, M. T.; Cabral, M. H.; Moutinho, A. M.
C. J. Am. Chem. Soc. 1997, 119, 6883-6887.
The ester linkage of PNA 6 is very stable in aqueous solution at
pH 7, as indicated by the lack of increase in fluorescence of a 2
µM solution of 6 over a period of 2 h (Figure 2). When 2 µM 6
and 5 µM 7 were incubated together under the same conditions,
10 formed with an initial rate of 8 × 10-5 µM‚s-1, which is 8
times that calculated for the reaction of 2 µM 1 and 5 µM 2, and
may be due to association of the PNA molecules. When 2 µM 6
and 5 µM 7 were incubated in the presence of 5 µM of the fully
complementary strand 8a, 10 formed with an initial rate of 0.015
µM‚s-1, which corresponds to a 188-fold increase in rate over the
reaction in the absence of DNA template. The reaction appeared
to approach only 50% completion, presumably due to the presence
of some oxidized phosphine resulting from exposure to air during
(14) Leffler, J. E.; Temple, R. D. J. Am. Chem. Soc. 1967, 89, 5235-5246.
(15) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.;
Driver, D. A.; Berg, R. H.; Kim, S. K.; Norden, B.; Nielsen, P. E. Nature
1993, 365, 566-568.
(16) Peffer, N. J.; Hanvey, J. C.; Bisi, J. E.; Thomson, S. A.; Hassman, C. F.;
Noble, S. A.; Babiss, L. E. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 10648-
10652.
(17) Uhlmann, E. Biol. Chem. 1998, 379, 1045-1052.
(18) Demidov, V. V.; Potaman, V. N.; Frank-Kamenetskii, M. D.; Egholm,
M.; Buchard, O.; Sonnichsen, S. H.; Nielsen, P. E. Biochem. Pharmacol.
1994, 48, 1310-1313.
(19) The copy number for human mRNAs ranges from 1 to 10 000/cell,
corresponding to 0.001-10 nM for a cell with a volume of 1 pL.
JA0452626
9
J. AM. CHEM. SOC. VOL. 126, NO. 50, 2004 16325